
Introduction to Python Programming
Course Notes

Phil Spector
Department of Statistics, University of California Berkeley

March 16, 2005

2

Contents

1 Introduction 7

1.1 What is Python? . 7

1.2 The very Basics of Python . 8

1.3 Invoking Python . 8

1.4 Basic Principles of Python . 11

1.4.1 Basic Core Language 11

1.4.2 Modules . 12

1.4.3 Object Oriented Programming 12

1.4.4 Namespaces and Variable Scoping 13

1.4.5 Exception Handling . 15

2 String Data 17

2.1 String Constants . 17

2.2 Special Characters and Raw Strings 18

2.3 Unicode Strings . 19

2.4 String Operations . 19

2.4.1 Concatenation . 19

2.4.2 Repetition . 21

2.4.3 Indexing and Slicing 21

2.4.4 Functions and Methods for Character Strings 23

3 Numeric Data 29

3.1 Types of Numeric Data . 29

3.1.1 Hexadecimal and Octal Constants 31

3.1.2 Numeric Operators . 31

3.1.3 Functions for Numeric Data 32

3.2 Conversion of Scalar Types . 33

3

4 CONTENTS

4 Lists, Tuples and Dictionaries 37

4.1 List Data . 37

4.2 List Indexing and Slicing . 39

4.3 List Operators . 42

4.3.1 Concatenation . 42

4.3.2 Repetition . 43

4.3.3 The in operator . 43

4.4 Functions and Methods for Lists 44

4.5 Tuple Objects . 48

4.6 Operators and Indexing for Tuples 49

4.7 Functions and Methods for Tuples 49

4.8 Dictionaries . 51

4.9 Functions and Methods for Dictionaries 52

5 Input and Output 55

5.1 The print command . 55

5.2 Formatting Strings . 55

5.3 Using Names in Format Strings 57

5.4 File Objects . 57

5.4.1 Methods for Reading 59

5.4.2 Methods for Writing 60

5.4.3 “Printing” to a File . 60

5.4.4 Other Methods . 61

5.4.5 File Object Variables 61

5.5 Standard Input and Output Streams 62

5.6 Pipes . 63

6 Programming 67

6.1 Assignments . 67

6.2 Indentation . 72

6.3 Truth, Falsehood and Logical Operators 72

6.4 if statement . 74

6.5 for loops . 76

6.6 for loops and the range function 78

6.7 while loops . 80

6.8 Control in Loops: break and continue 82

6.9 List Comprehensions . 84

CONTENTS 5

7 Functions 87
7.1 Introduction . 87
7.2 Scoping: How Python finds your variables 88
7.3 Function Basics . 92
7.4 Named Arguments and Default Values 93
7.5 Variable Number of Arguments 96
7.6 Functional Programming, and anonymous functions 98

8 Using Modules 103
8.1 Introduction . 103
8.2 Namespaces . 104
8.3 Functions for working with modules 106
8.4 The string module . 106

8.4.1 String Constants . 106
8.4.2 Functions in the string module 107

8.5 The re module: Regular Expressions 109
8.5.1 Introduction to Regular Expressions 109
8.5.2 Constructing Regular Expressions 109
8.5.3 Compiling Regular Expressions 110
8.5.4 Finding Regular Expression Matches 111
8.5.5 Tagging in Regular Expressions 113
8.5.6 Using Named Groups for Tagging 115
8.5.7 Greediness of Regular Expressions 116
8.5.8 Multiple Matches . 117
8.5.9 Substitutions . 119

8.6 Operating System Services: os and shutil modules 121
8.7 Expansion of Filename wildcards - the glob module 125
8.8 Information about your Python session - the sys module . . . 126
8.9 Copying: the copy module . 127
8.10 Object Persistence: the pickle/cPickle and shelve modules 128

8.10.1 Pickling . 128
8.10.2 The shelve module . 130

8.11 CGI (Common Gateway Interface): the cgi module 131
8.11.1 Introduction to CGI 131
8.11.2 Security Concerns . 134
8.11.3 CGI Environmental Variables 135

8.12 Accessing Documents on the Web: the urllib module 135

6 CONTENTS

9 Exceptions 139
9.1 Introduction . 139
9.2 Tracebacks . 139
9.3 Dealing with Multiple Exceptions 140
9.4 The Exception Hierarchy . 142
9.5 Raising Exceptions . 142

10 Writing Modules 147
10.1 Introduction . 147
10.2 An Example . 148
10.3 Test Programs for Modules . 150
10.4 Classes and Object Oriented Programming 151
10.5 Operator Overloading . 152
10.6 Private Attributes . 153
10.7 A First Example of Classes . 153
10.8 Inheritance . 158
10.9 Adding Methods to the Basic Types 163
10.10Iterators . 164

Chapter 1

Introduction

1.1 What is Python?

Python is a high-level scripting language which can be used for a wide variety
of text processing, system administration and internet-related tasks. Unlike
many similar languages, it’s core language is very small and easy to mas-
ter, while allowing the addition of modules to perform a virtually limitless
variety of tasks. Python is a true object-oriented language, and is available
on a wide variety of platforms. There’s even a python interpreter written
entirely in Java, further enhancing python’s position as an excellent solution
for internet-based problems.

Python was developed in the early 1990’s by Guido van Rossum, then
at CWI in Amsterdam, and currently at CNRI in Virginia. In some ways,
python grew out of a project to design a computer language which would be
easy for beginners to learn, yet would be powerful enough for even advanced
users. This heritage is reflected in python’s small, clean syntax and the thor-
oughness of the implementation of ideas like object-oriented programming,
without eliminating the ability to program in a more traditional style. So
python is an excellent choice as a first programming language without sacri-
ficing the power and advanced capabilities that users will eventually need.

Although pictures of snakes often appear on python books and websites,
the name is derived from Guido van Rossum’s favorite TV show, “Monty
Python’s Flying Circus”. For this reason, lots of online and print documen-
tation for the language has a light and humorous touch. Interestingly, many
experienced programmers report that python has brought back a lot of the

7

8 CHAPTER 1. INTRODUCTION

fun they used to have programming, so van Rossum’s inspiration may be well
expressed in the language itself.

1.2 The very Basics of Python

There are a few features of python which are different than other program-
ming languages, and which should be mentioned early on so that subsequent
examples don’t seem confusing. Further information on all of these features
will be provided later, when the topics are covered in depth.

Python statements do not need to end with a special character – the
python interpreter knows that you are done with an individual statement
by the presence of a newline, which will be generated when you press the
“Return” key of your keyboard. If a statement spans more than one line, the
safest course of action is to use a backslash (\) at the end of the line to let
python know that you are going to continue the statement on the next line;
you can continue using backslashes on additional continuation lines. (There
are situations where the backslashes are not needed which will be discussed
later.)

Python provides you with a certain level of freedom when composing a
program, but there are some rules which must always be obeyed. One of
these rules, which some people find very surprising, is that python uses in-
dentation (that is, the amount of white space before the statement itself) to
indicate the presence of loops, instead of using delimiters like curly braces
({}) or keywords (like “begin” and “end”) as in many other languages. The
amount of indentation you use is not important, but it must be consistent
within a given depth of a loop, and statements which are not indented must
begin in the first column. Most python programmers prefer to use an edi-
tor like emacs, which automatically provides consistent indentation; you will
probably find it easier to maintain your programs if you use consistent in-
dentation in every loop, at all depths, and an intelligent editor is very useful
in achieving this.

1.3 Invoking Python

There are three ways to invoke python, each with its’ own uses. The first
way is to type “python” at the shell command prompt. This brings up the

1.3. INVOKING PYTHON 9

python interpreter with a message similar to this one:

Python 2.2.1 (#2, Aug 27 2002, 09:01:47)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

The three greater-than signs (>>>) represent python’s prompt; you type your
commands after the prompt, and hit return for python to execute them. If
you’ve typed an executable statement, python will execute it immediately
and display the results of the statement on the screen. For example, if I use
python’s print statement to print the famous “Hello, world” greeting, I’ll
immediately see a response:

>>> print ’hello,world’

hello,world

The print statement automatically adds a newline at the end of the printed
string. This is true regardless of how python is invoked. (You can suppress
the newline by following the string to be printed with a comma.)

When using the python interpreter this way, it executes statements im-
mediately, and, unless the value of an expression is assigned to a variable
(See Section 6.1), python will display the value of that expression as soon as
it’s typed. This makes python a very handy calculator:

>>> cost = 27.00

>>> taxrate = .075

>>> cost * taxrate

2.025

>>> 16 + 25 + 92 * 3

317

When you use python interactively and wish to use a loop, you must,
as always, indent the body of the loop consistently when you type your
statements. Python can’t execute your statements until the completion of
the loop, and as a reminder, it changes its prompt from greater-than signs to
periods. Here’s a trivial loop that prints each letter of a word on a separate
line — notice the change in the prompt, and that python doesn’t respond
until you enter a completely blank line.

10 CHAPTER 1. INTRODUCTION

>>> word = ’python’

>>> for i in word:

... print i

...

p

y

t

h

o

n

The need for a completely blank line is peculiar to the interactive use of
python. In other settings, simply returning to the previous level of indenta-
tion informs python that you’re closing the loop.

You can terminate an interactive session by entering the end-of-file charac-
ter appropriate to your system (control-Z for Windows, control-D for Unix),
or by entering

import sys

sys.exit()

or

raise SystemExit

at the python prompt.
For longer programs, you can compose your python code in the editor of

your choice, and execute the program by either typing “python”, followed
by the name of the file containing your program, or by clicking on the file’s
icon, if you’ve associated the suffix of your python file with the python in-
terpreter. The file extension most commonly used for python files is “.py”.
Under UNIX systems, a standard technique for running programs written
in languages like python is to include a specially formed comment as the
first line of the file, informing the shell where to find the interpreter for your
program. Suppose that python is installed as /usr/local/bin/python on
your system. (The UNIX command “which python” should tell you where
python is installed if it’s not in /usr/local/bin.) Then the first line of your
python program, starting in column 1, should look like this:

#!/usr/local/bin/python

1.4. BASIC PRINCIPLES OF PYTHON 11

After creating a file, say myprogram.py, which contains the special comment
as its first line, you would make the file executable (through the UNIX com-
mand “chmod +x myprogram.py”), and then you could execute your pro-
gram by simply typing “myprogram.py” at the UNIX prompt.

When you’re running python interactively, you can instruct python to ex-
ecute files containing python programs with the execfile function. Suppose
that you are using python interactively, and wish to run the program you’ve
stored in the file myprog.py. You could enter the following statement:

execfile("myprog.py")

The file name, since it is not an internal python symbol (like a variable name
or keyword), must be surrounded by quotes.

1.4 Basic Principles of Python

Python has many features that usually are found only in languages which
are much more complex to learn and use. These features were designed into
python from its very first beginnings, rather than being accumulated into
an end result, as is the case with many other scripting languages. If you’re
new to programming, even the basic descriptions which follow may seem
intimidating. But don’t worry – all of these ideas will be made clearer in
the chapters which follow. The idea of presenting these concepts now is to
make you aware of how python works, and the general philosophy behind
python programming. If some of the concepts that are introduced here seem
abstract or overly complex, just try to get a general feel for the idea, and the
details will be fleshed out later

1.4.1 Basic Core Language

Python is designed so that there really isn’t that much to learn in the basic
language. For example, there is only one basic structure for conditional pro-
gramming (if/else/elif), two looping commands (while and for), and a
consistent method of handling errors (try/except) which apply to all python
programs. This doesn’t mean that the language is not flexible and powerful,
however. It simply means that you’re not confronted with an overwhelming
choice of options at every turn, which can make programming a much simpler
task.

12 CHAPTER 1. INTRODUCTION

1.4.2 Modules

Python relies on modules, that is, self-contained programs which define a
variety of functions and data types, that you can call in order to do tasks be-
yond the scope of the basic core language by using the import command. For
example, the core distribution of python contains modules for processing files,
accessing your computer’s operating system and the internet, writing CGI
scripts (which handle communicating with pages displayed in web browsers),
string handling and many other tasks. Optional modules, available on the
Python web site (http://www.python.org), can be used to create graphical
user interfaces, communicate with data bases, process image files, and so on.
This structure makes it easy to get started with python, learning specific
skills only as you need them, as well as making python run more efficiently
by not always including every capability in every program.

1.4.3 Object Oriented Programming

Python is a true object-oriented language. The term “object oriented” has
become quite a popular buzzword; such high profile languages as C++ and
Java are both object oriented by design. Many other languages add some
object-oriented capabilities, but were not designed to be object oriented from
the ground up as python was. Why is this feature important? Object ori-
ented program allows you to focus on the data you’re interested in, whether
it’s employee information, the results of a scientific experiment or survey,
setlists for your favorite band, the contents of your CD collection, informa-
tion entered by an internet user into a search form or shopping cart, and
to develop methods to deal efficiently with your data. A basic concept of
object oriented programming is encapsulation, the ability to define an object
that contains your data and all the information a program needs to operate
on that data. In this way, when you call a function (known as a method in
object-oriented lingo), you don’t need to specify a lot of details about your
data, because your data object “knows” all about itself. In addition, objects
can inherit from other objects, so if you or someone else has designed an ob-
ject that’s very close to one you’re interested in, you only have to construct
those methods which differ from the existing object, allowing you to save a
lot of work.

Another nice feature of object oriented programs is operator overloading.
What this means is that the same operator can have different meanings

1.4. BASIC PRINCIPLES OF PYTHON 13

when used with different types of data. For example, in python, when you’re
dealing with numbers, the plus sign (+) has its usual obvious meaning of
addition. But when you’re dealing with strings, the plus sign means to join
the two strings together. In addition to being able to use overloading for
built-in types (like numbers and strings), python also allows you to define
what operators mean for the data types you create yourself.

Perhaps the nicest feature of object-oriented programming in python is
that you can use as much or as little of it as you want. Until you get
comfortable with the ideas behind object-oriented programming, you can
write more traditional programs in python without any problems.

1.4.4 Namespaces and Variable Scoping

When you type the name of a variable inside a script or interactive python
session, python needs to figure out exactly what variable you’re using. To
prevent variables you create from overwriting or interfering with variables in
python itself or in the modules you use, python uses the concept of multiple
namespaces. Basically, this means that the same variable name can be used
in different parts of a program without fear of destroying the value of a
variable you’re not concerned with.

To keep its bookkeeping in order, python enforces what is known as the
LGB rule. First, the local namespace is searched, then the global names-
pace, then the namespace of python built-in functions and variables. A
local namespace is automatically created whenever you write a function, or a
module containing any of functions, class definitions, or methods. The global
namespace consists primarily of the variables you create as part of the “top-
level” program, like a script or an interactive session. Finally, the built-in
namespace consists of the objects which are part of python’s core. You can
see the contents of any of the namespaces by using the dir command:

>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’]
>>> dir(__builtins__)
[’ArithmeticError’, ’AssertionError’, ’AttributeError’, ’EOFError’,
’Ellipsis’, ’Exception’, ’FloatingPointError’, ’IOError’, ’ImportError’,
’IndexError’, ’KeyError’, ’KeyboardInterrupt’, ’LookupError’,
’MemoryError’, ’NameError’, ’None’, ’OverflowError’, ’RuntimeError’,
’StandardError’, ’SyntaxError’, ’SystemError’, ’SystemExit’, ’TypeError’,
’ValueError’, ’ZeroDivisionError’, ’_’, ’__debug__’, ’__doc__’,

14 CHAPTER 1. INTRODUCTION

’__import__’, ’__name__’, ’abs’, ’apply’, ’callable’, ’chr’, ’cmp’,
’coerce’, ’compile’, ’complex’, ’delattr’, ’dir’, ’divmod’, ’eval’,
’execfile’, ’filter’, ’float’, ’getattr’, ’globals’, ’hasattr’,
’hash’, ’hex’, ’id’, ’input’, ’int’, ’intern’, ’isinstance’,
’issubclass’, ’len’, ’list’, ’locals’, ’long’, ’map’, ’max’, ’min’,
’oct’, ’open’, ’ord’, ’pow’, ’range’, ’raw_input’, ’reduce’, ’reload’,
’repr’, ’round’, ’setattr’, ’slice’, ’str’, ’tuple’, ’type’, ’vars’,
’xrange’]

The __builtins__ namespace contains all the functions, variables and ex-
ceptions which are part of python’s core.

To give controlled access to other namespaces, python uses the import

statement. There are three ways to use this statement. In its simplest form,
you import the name of a module; this allows you to specify the various
objects defined in that module by using a two level name, with the mod-
ule’s name and the object’s name separated by a period. For example, the
string module (Section 8.4) provides many functions useful for dealing with
character strings. Suppose we want to use the split function of the string

module to break up a sentence into a list containing separate words. We
could use the following sequence of statements:

>>> import string

>>> string.split(’Welcome to the Ministry of Silly Walks’)

[’Welcome’, ’to’, ’the’, ’Ministry’, ’of’, ’Silly’, ’Walks’]

If we had tried to refer to this function as simply “split”, python would not
be able to find it. That’s because we have only imported the string module
into the local namespace, not all of the objects defined in the module. (See
below for details of how to do that.)

The second form of the import statement is more specific; it specifies the
individual objects from a module whose names we want imported into the
local namespace. For example, if we only needed the two functions split

and join for use in a program, we could import just those two names directly
into the local namespace, allowing us to dispense with the string. prefix:

>>> from string import split,join

>>> split(’Welcome to the Ministry of Silly Walks’)

[’Welcome’, ’to’, ’the’, ’Ministry’, ’of’, ’Silly’, ’Walks’]

This technique reduces the amount of typing we need to do, and is an efficient
way to bring just a few outside objects into the local environment.

1.4. BASIC PRINCIPLES OF PYTHON 15

Finally, some modules are designed so that you’re expected to have top-
level access to all of the functions in the module without having to use the
module name as a prefix. In cases like this you can use a statement like:

>>> from string import *

Now all of the objects defined in the string module are available directly
in the top-level environment, with no need for a prefix. You should use
this technique with caution, because certain commonly used names from the
module may override the names of your variables. In addition, it introduces
lots of names into the local namespace, which could adversely affect python’s
efficiency.

1.4.5 Exception Handling

Regardless how carefully you write your programs, when you start using
them in a variety of situations, errors are bound to occur. Python provides
a consistent method of handling errors, a topic often refered to as exception
handling. When you’re performing an operation that might result in an
error, you can surround it with a try loop, and provide an except clause to
tell python what to do when a particular error arises. While this is a fairly
advanced concept, usually found in more complex languages, you can start
using it in even your earliest python programs.

As a simple example, consider dividing two numbers. If the divisor is
zero, most programs (python included) will stop running, leaving the user
back at a system shell prompt, or with nothing at all. Here’s a little python
program that illustrates this concept; assume we’ve saved it to a file called
div.py:

#!/usr/local/bin/python

x = 7

y = 0

print x/y

print "Now we’re done!"

When we run this program, we don’t get to the line which prints the message,
because the division by zero is a “fatal” error:

% div.py

Traceback (innermost last):

16 CHAPTER 1. INTRODUCTION

File "div.py", line 5, in ?

print x/y

ZeroDivisionError: integer division or modulo

While the message may look a little complicated, the main point to notice
is that the last line of the message tells us the name of the exception that
occured. This allows us to construct an except clause to handle the problem:

x = 7

y = 0

try:

print x/y

except ZeroDivisionError:

print "Oops - I can’t divide by zero, sorry!"

print "Now we’re done!"

Now when we run the program, it behaves a little more nicely:

% div.py

Oops - I can’t divide by zero, sorry!

Now we’re done!

Since each exception in python has a name, it’s very easy to modify your
program to handle errors whenever they’re discovered. And of course, if you
can think ahead, you can construct try/except clauses to catch errors before
they happen.

Chapter 2

String Data

2.1 String Constants

Strings are a collection of characters which are stored together to represent
arbitrary text inside a python program. You can create a string constant
inside a python program by surrounding text with either single quotes (’),
double quotes ("), or a collection of three of either types of quotes (’’’ or
"""). In the first two cases, the opening and closing quotes must appear on
the same line in your program; when you use triple quotes, your text can
span as many lines as you like. The choice of which quote symbol to use is
up to you – both single and double quotes have the same meaning in python.

Here are a few examples of how to create a string constant and assign its
value to a variable:

name = ’Phil’

value = "$7.00"

helptext = """You can create long strings of text

spanning several lines by using triple quotes at

the beginning and end of the text"""

When the variable helptext is printed (using the print command; Sec-
tion 5.1), it would display as three lines, with the line breaks at the same
points as in the triple-quoted text.

You can also create strings by reading input from a file (Section 5.4.1),
or by concatenating smaller strings (Section 2.4.1).

17

18 CHAPTER 2. STRING DATA

Sequence Meaning Sequence Meaning

\ continuation \\ literal backslash
\’ single quote \" double quote
\a bell \b backspace
\e escape character \0 null terminator
\n newline \t horizontal tab
\f form feed \r carriage return
\0XX octal character XX \xXX hexadecimal value XX

Table 2.1: Special Characters in Strings

2.2 Special Characters and Raw Strings

Inside of any of the pairs of quotes described in the previous section, there
are special character sequences, beginning with a backslash (\), which are
interpreted in a special way. Table 2.1 lists these characters.

Using a single backslash as a continuation character is an alternative
to using triple quoted strings when you are constructing a string constant.
Thus, the following two expressions are equivalent, but most programmers
prefer the convenience of not having to use backslashes which is offered by
triple quotes.

threelines = ’First\

Second\

Third’

threelines = ’’’First

Second

Third’’’

The backslashed quote symbols are useful if you need to create a string
with both single and double quotes. (If you have only one kind of quotes in
your string, you can simply use the other kind to surround your string, since
the two types of quotes are equivalent in python.)

As Table 2.1 shows, you can produce a backslash in a string by typing
two backslashes; note that only one of the backslashes will actually appear
in the string when it’s printed. There are certain situations (most notably
when constructing regular expressions (Section 8.5)), when typing two back-
slashes to get a single backslash becomes tedious. Python provides what are

2.3. UNICODE STRINGS 19

called raw strings, in which the character sequences shown in Table 2.1 have
no special meaning. To construct a raw string, precede the opening quote
character with either a lowercase or uppercase “R” (r or R). Note, however
that a backslash cannot be the very last character of a raw string. Thus,
these two expressions are equivalent:

>>> print ’Here is a backslash: \\ ’

Here is a backslash: \

>>> print r’Here is a backslash: \ ’

Here is a backslash: \

2.3 Unicode Strings

Starting with version 2.0, python provides support for Unicode strings, whose
characters are stored in 16 bits instead of the 8 bits used by a normal string.
To specify that a string should be stored using this format, precede the open-
ing quote character with either a lowercase or uppercase “U”. In addition,
an arbitrary Unicode character can be specified with the notation “\uhhhh”,
where hhhh represents a four-digit hexadecimal number.

Notice that if a unicode string is combined with a regular string, the
resulting string will also be a Unicode string.

2.4 String Operations

The following subsections describe some of the operations that are available
with strings.

2.4.1 Concatenation

The addition operator (+) takes on the role of concatenation when used with
strings, that is, the result of “adding” two strings together is a new string
which consists of the original strings put together:

>>> first = ’black’

>>> second = ’jack’

>>> first + second

’blackjack’

20 CHAPTER 2. STRING DATA

No space or other character is inserted between concatenated strings. If you
do want a space, you can simply add it:

>>> first + " " + second

’black jack’

When the strings you want to concatenate are literal string constants, that
is, pieces of text surrounded by any of the quotes that python accepts, you
don’t even need the plus sign; python will automatically concatenate string
constants that are separated by whitespace:

>>> nums = "one " "two " "three "

>>> nums

’one two three ’

You can freely mix variables and string constants together — anywhere
that python expects a string, it can be either a variable or a constant:

>>> msg = """Send me email

... My address is """

>>> msg + "me@myplace.com"

’Send me email\012My address is me@myplace.com’

Notice that the newline which was entered in the triple quoted string appears
as \012, the octal representation of the (non-printable) newline character.
When you use the print command, the newline is displayed as you would
expect:

>>> print msg + ’me@myplace.com’

Send me email

My address is me@myplace.com

Remember that python considers the type of an object when it tries to
apply an operator, so that if you try to concatenate a string and a number,
you’ll have problems:

>>> x = 12./7.

>>> print ’The answer is ’ + x

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: illegal argument type for built-in operation

2.4. STRING OPERATIONS 21

The number (x) must first be converted to a string before it can be con-
catentated. Python provides two ways to do this: the core function repr,
or the backquote operator (‘‘). The following example shows both of these
techniques used to solve the problem of concatenating strings and numbers:

>>> print ’The answer is ’ + repr(x)

The answer is 1.71428571429

>>> print ’The answer is ’ + ‘x‘

The answer is 1.71428571429

Notice that python uses its default of 12 significant figures; if you want more
control over the way numbers are converted to strings, see Section 5.2, where
the percent operator (%) for string formatting is introduced.

When you want to concatenate lots of strings together, the join method
for strings (Section 2.4.4), or the join function in the string module (Sec-
tion 8.4.2) are more convenient.

2.4.2 Repetition

The asterisk (*), when used between a string and an integer creates a new
string with the old string repeated by the value of the integer. The order of
the arguments is not important. So the following two statements will both
print ten dashes:

>>> ’-’ * 10

’----------’

>>> 10 * ’-’

’----------’

Trying to use the repetition operator between two strings results in a Type

Error exception.

2.4.3 Indexing and Slicing

Strings in python support indexing and slicing. To extract a single character
from a string, follow the string with the index of the desired character sur-
rounded by square brackets ([]), remembering that the first character of a
string has index zero.

22 CHAPTER 2. STRING DATA

>>> what = ’This parrot is dead’

>>> what[3]

’s’

>>> what[0]

’T’

If the subscript you provide between the brackets is less than zero, python
counts from the end of the string, with a subscript of -1 representing the last
character in the string.

>>> what[-1]

’d’

To extract a contiguous piece of a string (known as a slice), use a subscript
consisting of the starting position followed by a colon (:), finally followed by
one more than the ending position of the slice you want to extract. Notice
that the slicing stops immediately before the second value:

>>> what[0:4]

’This’

>>> what[5:11]

’parrot’

One way to think about the indexes in a slice is that you give the starting
position as the value before the colon, and the starting position plus the
number of characters in the slice after the colon.

For the special case when a slice starts at the beginning of a string, or
continues until the end, you can omit the first or second index, respectively.
So to extract all but the first character of a string, you can use a subscript
of 1: .

>>> what[1:]

’his parrot is dead’

To extract the first 3 characters of a string you can use :3 .

>>> what[:3]

’Thi’

If you use a value for a slice index which is larger than the length of the
string, python does not raise an exceptrion, but treats the index as if it was
the length of the string.

As always, variables and integer constants can be freely mixed:

2.4. STRING OPERATIONS 23

>>> start = 3

>>> finish = 8

>>> what[start:finish]

’s par’

>>> what[5:finish]

’par’

Using a second index which is less than or equal to the first index will
result in an empty string. If either index is not an integer, a TypeError

exception is raised unless, of course, that index was omitted.

2.4.4 Functions and Methods for Character Strings

The core language provides only one function which is useful for working
with strings; the len function, which returns the number of characters which
a character string contains. In versions of Python earlier than 2.0, tools
for working with strings were provided by the string module (Section 8.4).
Starting with version 2.0, strings in python became “true” objects, and a
variety of methods were introduced to operate on strings. If you find that the
string methods described in this section are not available with your version
of python, refer to Section 8.4 for equivalent capabilities through the string
module. (Note that on some systems, a newer version of Python may be
available through the name python2.)

Since strings are the first true objects we’ve encountered a brief descrip-
tion of methods is in order. As mentioned earlier (Section 1.4.3), when
dealing with objects, functions are known as methods. Besides the terminol-
ogy, methods are invoked slightly differently than functions. When you call
a function like len, you pass the arguments in a comma separated list sur-
rounded by parentheses after the function name. When you invoke a method,
you provide the name of the object the method is to act upon, followed by a
period, finally followed by the method name and the parenthesized list of ad-
ditional arguments. Remember to provide empty parentheses if the method
does not take any arguments, so that python can distinguish a method call
with no arguments from a reference to a variable stored within the object.

Strings in python are immutable objects; this means that you can’t change
the value of a string in place. If you do want to change the value of a string,
you need to invoke a method on the variable containing the string you wish
to change, and to reassign the value of that operation to the variable in

24 CHAPTER 2. STRING DATA

question, as some of the examples below will show.
Many of the string methods provided by python are listed in Table 2.2.

Among the most useful are the methods split and join. The split method
operates on a string, and returns a list, each of whose elements is a word in
the original string, where a word is defined by default as a group of non-
whitespace characters, joined by one or more whitespace characters. If you
provide one optional argument to the split method, it is used to split the
string as an alternative to one or more whitespace characters. Note the sub-
tle difference between invoking split with no arguments, and an argument
consisting of a single blank space:

>>> str = ’This parrot is dead’

>>> str.split()

[’This’, ’parrot’, ’is’, ’dead’]

>>> str.split(’ ’)

[’This’, ’parrot’, ’’, ’is’, ’dead’]

When more than one space is encountered in the string, the default method
treats it as if it were just a single space, but when we explicitly set the
separator character to a single space, multiple spaces in the string result in
extra elements in the resultant list. You can also obtain the default behavior
for split by specifying None for the sep argument.

The maxsplit argument to the split method will result in a list with
maxsplit + 1 elements. This can be very useful when you only need to split
part of a string, since the remaining pieces will be put into a single element
of the list which is returned. For example, suppose you had a file containing
definitions of words, with the word being the first string and the definition
consisting of the remainder of the line. By setting maxsplit to 1, the word
would become the first element of the returned list, and the definition would
become the second element of the list, as the following example shows:

>>> line = ’Ni a sound that a knight makes’

>>> line.split(maxsplit=1)

[’Ni’, ’a sound that a knight makes’]

In some versions of python, the split method will not accept a named
argument for maxsplit. In that case, you would need to explicitly specify
the separator, using None to obtain the default behavior.

>>> line.split(None,1)

[’Ni’, ’a sound that a knight makes’]

2.4. STRING OPERATIONS 25

Split and Join
Name Purpose Arguments
join Insert a string between each element of a sequence sequence
split Create a list from “words” in a string sep(optional)

maxsplit(optional)
splitlines Create a list from lines in a string keepends(optional)

Methods for searching
Note: Each of these functions accepts optional arguments start and end

which limit the range of the search.
Name Purpose Arguments
count Count the number of occurences of substring substring
find Return the lowest index where substring is found, substring

and -1 if not found
index Like find, but raises ValueError if not found substring
rfind Return the highest index where substring is found, substring

and -1 if not found
rindex Like rfind, but raises ValueError if not found substring

Methods for Justification
Name Purpose Arguments
center Centers a string in a given width width
ljust Left justifies a string width
lstrip Removes leading whitespace
rjust Right justifies a string width
rstrip Removes trailing whitespace
strip Removes leading and trailing whitespace

Methods for Case (upper/lower)
Name Purpose Arguments
capitalize Capitalize the first letter of the string
lower Make all characters lower case
swapcase Change upper to lower and lower to upper
title Capitalize the first letter of each word in the string
upper Make all characters upper case

Table 2.2: String Methods

26 CHAPTER 2. STRING DATA

When using the join method for strings, remember that the method
operates on the string which will be used between each element of the joined
list, not on the list itself. This may result in some unusual looking statements:

>>> words = [’spam’,’spam’,’bacon’,’spam’]

>>> ’ ’.join(words)

’spam spam bacon spam’

Of course, you could assign the value of ’ ’ to a variable to improve the
appearance of such a statement.

The index and find functions can be useful when trying to extract sub-
strings, although techniques using the re module (Section 8.5) will generally
be more powerful. As an example of the use of these functions, suppose we
have a string with a parenthesized substring, and we wish to extract just
that substring. Using the slicing techniques explained in Section 2.4.3, and
locating the substring using, for example index and rindex, here’s one way
to solve the problem:

>>> model = ’Turbo Accelerated Widget (MMX-42b) Press’

>>> try:

... model[model.index(’(’) + 1 : model.rindex(’)’)]

... except ValueError:

... print ’No parentheses found’

...

’MMX-42b’

When you use these functions, make sure to check for the case where the
substring is not found, either the ValueError raised by the index functions,
or the returned value of -1 from the find functions.

Remember that the string methods will not change the value of the string
they are acting on, but you can achieve the same effect by overwriting the
string with the returned value of the method. For example, to replace a string
with an equivalent version consisting of all upper-case characters, statements
like the following could be used:

>>> language = ’python’

>>> language = language.upper()

>>> language

’PYTHON’

2.4. STRING OPERATIONS 27

Finally, python offers a variety of so-called predicate methods, which
take no arguments, and return 1 if all the characters in a string are of a
particular type, and 0 otherwise. These functions, whose use should be
obvious from their names, include isalnum, isalpha, isdigit, islower,
isspace, istitle, and isupper.
Related modules: string, re, stringIO.
Related exceptions: TypeError, IndexError.

28 CHAPTER 2. STRING DATA

Chapter 3

Numeric Data

3.1 Types of Numeric Data

Python supports four types of numeric objects: integers, long integers, float-
ing point numbers, and complex numbers. In general, python will not au-
tomatically convert numbers from one type to another, although it provides
a complete set of functions to allow you to explicitly do these conversions
(Section 3.2).

To enter numeric data inside an interactive python session or in a script,
simply set the value of a variable to the desired number. To specify a floating
point number, either include a decimal point somewhere in the number, or use
exponential notation, for example 1e3 or 1E3 to represent 1000 (1 times 10
to the third power). Note that when using exponentional notation, numbers
are always stored as floating point, even if there is no decimal point.

Long integers can be entered by following an ordinary integer with the
letter “L”, either lowercase (e.g. 27l) or uppercase (e.g. 27L). (Since a
lowercase “l” looks so much like the number “1”, you may want to get in the
habit of using uppercase “L”s in this context.) In python, long integers are
actually what are sometimes called “arbitrary precision” integers, since they
can have as many digits as you have the patience to type into the computer.
On most computers, ordinary integers have a range from about -2 billion
to +2 billion. Trying to use an integer larger than this value results in an
OverlowError:

>>> x = 2000000000

>>> x = x + x / 2

29

30 CHAPTER 3. NUMERIC DATA

Traceback (innermost last):

File "<stdin>", line 1, in ?

OverflowError: integer addition

You’ll never see such an error when using a long integer:

>>> x = 2000000000L

>>> x = x + x / 2

>>> x

3000000000L

A further advantage of long integers is that all arithemetic performed
with long integers will be exact, unlike floating point numbers which have
a limited precision (about 15 or 16 digits on most computers). It comes as
a surprise to many people that adding a small floating point number to a
very large floating point number will not change the original floating point
number. (In the following example, I’ll use some formatted I/O features
explained more fully in Section 5.2):

>>> x = 1e16

>>> ’%f’ % x

’10000000000000000.000000’

>>> x1 = x + 1.

>>> ’%f’ % x1

’10000000000000000.000000’

The addition of 1 to such a huge number makes no difference because of the
limited precision of floating point numbers. However, all integer arithmetic
is exact when using long integers:

>>> xl = long(x)

>>> xl

10000000000000000L

>>> xl + 1

10000000000000001L

(As explained in Section 3.2, the long function converts its argument into a
long integer.) While it might be tempting to store all integers as long inte-
gers, remember that, while regular integer arithmetic is supported by most
operating systems, python has to perform all its own long integer arithmetic,

3.1. TYPES OF NUMERIC DATA 31

so using long integers will definitely slow your programs down. But if you
know your numbers will fall outside the range of a normal integer, long inte-
gers can be a very useful tool.

Complex numbers can be entered into python using either the complex

function, or by denoting the complex number as the real portion followed
by a plus sign, followed by the imaginary portion with a trailing “J” (ei-
ther upper or lower case). There can be no spaces between the imaginary
portion and the “J”. Thus 3.2 + 7j is a valid complex number, but 3.2

+ 7 j is not. The complex function can be called with either one or two
arguments representing the real component or the real and imaginary com-
ponents respectively; complex(3.2,7) is equivalent to the previous example.
Regardless of how you enter a complex number, both components are stored
as floating point numbers.

3.1.1 Hexadecimal and Octal Constants

As an alternative to decimal constants, python allows you to enter numbers as
either octal (base 8) or hexadecimal (base 16) constants. Octal constants are
recognized by python because they start with a leading zero (0); in particular
a number like 012 is interpreted as an octal number (with a decimal value of
10), not as a decimal number with a leading zero, and a number like 09 will
generate a SyntaxError exception, since 9 is not a valid octal digit.

Hexadecimal constants start with a leading zero, followed by the letter
“x” (either upper or lower case). In addition to the decimal digits, these
constants can contain the letters a, b, c, d, e, or f (again, either upper or
lower case), representing the extra hexadecimal digits beyond 9.

Note that these constants are numeric values, not string values, and thus
should not be surrounded by quotes. Trying to use a string representation
of an octal or hexadecimal constants raises a TypeError exception.

Arithmetic performed on octal or hexadecimal numbers will be displayed
in decimal form by the python interpreter. The functions hex and oct convert
their arguments into a string representation of the corresponding hexadecimal
or octal value, respectively.

3.1.2 Numeric Operators

Python supports the full set of binary arithmetic operators that you would
expect in a modern computer language. A binary operator is one which per-

32 CHAPTER 3. NUMERIC DATA

Operator Function Operator Function

+ Addition - Subtraction
* Multiplication / Division
>> Right bit shift << Left bit shift
** Exponentiation % Modulus

Table 3.1: Arithmetic Operators

forms an operation on exactly two elements, one on each side of the operator’s
symbol. Table 3.1 shows the operators supported by python.

When performing operations on integers, be aware that python performs
integer arithmetic unless at least one of the operands is a floating point
number. See Section 3.2 for further information.

In addition to the binary operators in Table 3.1, python also provides
unary operators for plus and minus. Thus any number or expression which
returns a single numeric value can be preceded by either a minus sign (-) or
a plus sign (+).

3.1.3 Functions for Numeric Data

A few basic mathematical functions are part of python’s core; many more
can be found in the math module.

The abs function returns the absolute value of its argument, that is, the
value itself if it is greater than or equal to 0, and the negative of the value
otherwise. The round function performs rounding on its argument. Unlike
integer arithmetic, which simply drops any fractional portion of a number,
round returns a floating point representation of the nearest integer of its
argument, truncating when the fraction is less than 0.5, and advancing to
the next integer when the fraction is greater than 0.5.

The divmod function accepts two numeric arguments, and returns a tuple
(Section 4.5) containing two floating point values. The first argument is
divided by the second argument, and the function returns (in the first element
of the tuple) the number of times the second element goes into the first and
(in the second element of the tuple) the remainder. The divmod function
accepts either integer or floating point arguments:

>>> divmod(21,4)

(5, 1)

3.2. CONVERSION OF SCALAR TYPES 33

>>> divmod(25.8,.7)

(36.0, 0.6)

Note that, in the first example, 21 = 5 * 4 + 1, and in the second exam-
ple 25.8 = 36 * 0.7 + 0.6. The modulus function found in many other
languages returns the second element of the tuple returned by divmod.

The pow function is an alternative to the exponentiation operator (**).
It accepts two arguments; the first is the numerical expression to be raised to
a power, and the second is the power to which the number should be raised.
Provided with two integer arguments, pow returns an integer; if either of the
arguments is a floating point number, it will return a floating point number.
Similarly, if a long integer is provided as the first argument, it will return a
long integer, unless the second argument is a floating point number.
Related modules: array, cmath, math, random
Related exceptions: ZeroDivisionError, OverflowError, FloatingPointError

3.2 Conversion of Scalar Types

In general, python will not automatically convert objects from one type to
another, but instead provides functions to allow these conversions to be per-
formed. One area which requires particular caution is integer arithmetic.
When python evaluates arithmetic expressions which contain only integers,
it performs its operations using integer arithmetic. For addition subtrac-
tion, and multiplication, this will not result in any surprises, but for division
python truncates its results to the nearest integer smaller than the answer. If
at least one of the numbers involved in the expression containing the division
is a floating point number, then the integers involved in the computation will
be temporarily converted to floating point numbers for the purpose of the
computation only. The following example illustrates some of these points, as
well as introducing the float conversion function.

>>> x = 3

>>> y = 2

>>> x / y

1

>>> float(x) / y

1.5

>>> float(x/y)

34 CHAPTER 3. NUMERIC DATA

1.0

Since the values of the variables x and y were entered as integers, any arith-
metic operations involving them will be carried out using integer arithmetic;
thus, when 3 is divided by 2, the (integer) answer is 1. By converting either
operand to a float, the expected result of 1.5 can be obtained. Other numeric
conversion routines include long and int.

When values in a computation are numbers rather than variable names,
it suffices to include a decimal point in any of the operands of an arithmetic
expression to insure that the entire computation will be carried out using
floating point arithmetic, but there is no harm in including decimal points
(or exponential notation) for all the operands. Thus the following expressions
all result in the same answer:

>>> 3. / 2

1.5

>>> 3 / 2.

1.5

>>> 3. / 2.

1.5

These conversion routines are also necessary to convert numbers repre-
sented as strings into actual python numeric values. If you attempt to use a
string value, even if it is a representaion of a number, as a numeric value, it
will raise a TypeError:

>>> ’3’ / 2.

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: bad operand type(s) for /

Simply pass the string to the appropriate conversion function (float, int
or long) to fix the error:

>>> float(’3’) / 2.

1.5

This same technique is required when numbers are read from a file, since in
this case they will enter the python environment as strings.

If you have two numeric values and simply want to convert them to a
common type, the function coerce can be used. If you consider the hierarchy

3.2. CONVERSION OF SCALAR TYPES 35

of integer, long integer, floating point number and complex number, coerce
converts the argument which is lower in the hierarchy to the type of the
argument which is higher. The following examples illustrate this point:

>>> coerce(3,5L)

(3L, 5L)

>>> coerce(3,5.)

(3.0, 5.0)

>>> coerce(3L,5.)

(3.0, 5.0)

>>> coerce(3.,2.+1j)

((3+0j), (2+1j))

One other area where explicit conversion is needed is when trying to
operate on numbers and strings together. Since python relies on operator
overloading to perform many common tasks, it will generate a TypeError

when you ask it to perform such operations on dissimilar types. For example,
consider the variable a, with a numeric value of 7, and the variable b with the
string value of “8”. What should python do when you ask to “add” together
these two values?

>>> a = 7

>>> b = ’8’

>>> a + b

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: number coercion failed

Since the answer isn’t clear, python raises the exception. There are two
possibilities: treat a as a string, and concatenate it with b, or treat b as a
number and add it to a. The builtin function str can be used to temporarily
convert a number to its string representation; any of the conversion functions
mentioned in the previous paragraphs can be used to convert a string to a
number.

>>> str(a) + b

’78’

>>> a + int(b)

15

36 CHAPTER 3. NUMERIC DATA

Python will always be able to convert numbers to strings, but it will raise a
ValueError exception if you attempt to convert a string to a number when
that string does not represent a number.

Chapter 4

Lists, Tuples and Dictionaries

4.1 List Data

Lists provide a general mechanism for storing a collection of objects indexed
by a number in python. The elements of the list are arbitrary — they can be
numbers, strings, functions, user-defined objects or even other lists, making
complex data structures very simple to express in python. You can input a
list to the python interpreter by surrounding a comma separated list of the
objects you want in the list with square brackets ([]) Thus, a simple list of
numbers can be created as follows:

>>> mylist = [1,7,9, 13, 22, 31]

Python ignores spaces between the entries of a list. If you need to span
multiple lines with a list entry, you can simply hit the return key after any
comma in the list:

>>> newlist = [7, 9, 12, 15,

... 17,19,103]

Note that the python interpreter changes its prompt when it recognizes a
continuation line, and that no indentation is necessary to continue a line like
this. Inside a script, your input can also be broken up after commas in a
similar fashion. To create an empty list, use square brackets with no elements
in between them ([]).

The elements of a list need not be of the same type. The following list
contains numeric, string and list data, along with a function:

37

38 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

>>> mixlist = [7,’dog’,’tree’,[1,5,2,7],abs]

Since the token abs was entered in the list without quotes, python interprets
it as a named object; in this case it represents the builtin function abs. Since
functions and many other objects can’t be displayed in the same fashion as
a number or a string, python uses a special notation to display them:

>>> mixlist

[7, ’dog’, ’tree’, [1, 5, 2, 7], <built-in function abs>]

The angle brackets surrounding the phrase “built-in function abs” indicate
that that element of the list is a special object of some sort.

To access the individual elements of a list, use square brackets after the
list’s name surrounding the index of the desired element. Recall that the
first element of a sequence in python is numbered zero. Thus, to extract the
abs function from mylist in the example above, we would refer to element
4, i.e. mylist[4]:

>>> mixlist[4](-5)

5

This example shows that once an element is extracted from a list, you can use
it in any context in which the original element could be used; by providing
an argument in parentheses to mixlist[4], we call the function abs which
was stored in that position in the list. Furthermore, when accessing lists
inside of lists, you can simply use additional sets of square brackets to access
individual elements:

>>> nestlist = [1,2,[10,20,30,[7,9,11,[100,200,300]]],[1,7,8]]

>>> nestlist[2]

[10, 20, 30, [7, 9, 11, [100, 200, 300]]]

>>> nestlist[2][3]

[7, 9, 11, [100, 200, 300]]

>>> nestlist[2][3][3]

[100, 200, 300]

>>> nestlist[2][3][3][0]

100

While this is a competely artificial example, it shows that you can nest lists
to any level you choose, and that the individual elements of those lists are
always extracted in a simple, consistent way.

4.2. LIST INDEXING AND SLICING 39

You may notice a similarity between the way you access elements in a
list, and the way you access individual characters in a character string (Sec-
tion 2.4.3). This is because both strings and lists are examples of python
sequences, and they behave consistently. For example, to find out the num-
ber of elements in a list, you can use the built-in function len, just as you
would to find the number of characters in a character string. Calling len

with a non-sequence argument results in a TypeError exception, however.

>>> len(mixlist)

5

>>> len(mixlist[3])

4

>>> len(mixlist[1])

3

>>> len(mixlist[0])

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: len() of unsized object

In the first case, calling len with the argument mixlist returns the number
of elements in the list, namely 5. Similarly, refering to mixlist[3], corre-
sponding to the list [1, 5, 2, 7] returns 4, the number of elements in that
list. Calling len with mixlist[1] (which is the string “dog”) returns the
number of characters in the string, but calling len with the scalar argument
mixlist[0] (which is the integer 7), results in an exception.

To convert a string into a list, making each character in the string a
separate element in the resulting list, use the list function.

4.2 List Indexing and Slicing

The slicing operations introduced in Section 2.4.3 also work with lists, with
one very useful addition. As well as using slicing to extract part of a list
(i.e. a slice on the right hand sign of an equal sign), you can set the value of
elements in a list by using a slice on the left hand side of an equal sign. In
python terminology, this is because lists are mutable objects, while strings are
immutable. Simply put, this means that once a string’s value is established,
it can’t be changed without creating a new variable, while a list can be
modified (lengthened, shortened, rearranged, etc.) without having to store

40 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

the results in a new variable, or reassign the value of an expression to the
original variable name.

Consider a list with 5 integer elements:

>>> thelist = [0,5,10,15,20]

Now suppose we wish to change the central three elements (5, 10 and 15,
at positions 1, 2 and 3 in the list) to the values 6, 7, and 8. As with a string,
we could extract the three elements with a statement like:

>>> thelist[1:4]

[5, 10, 15]

But with a list, we can also assign values to that slice:

>>> thelist[1:4] = [6,7,8]

>>> thelist

[0, 6, 7, 8, 20]

If the number of elements in the list on the right hand side of the equal
sign is not equal to the number of elements implied by the subscript of the
slice, the list will expand or shrink to accomodate the assignment. (Recall
that the number of elements in a slice is the higher valued subscript minus
the lower valued subscript.) The following examples illustrate this point:

>>> words = [’We’,’belong’,’to’,’the’,’knights’,’who’,’say’,’"Ni"’]

>>> words[1:4] = [’are’]

>>> words

[’We’, ’are’, ’knights’, ’who’, ’say’, ’"Ni"’]

>>> words[1:2] = [’are’,’a’,’band’,’of’]

[’We’, ’are’, ’a’, ’band’, ’of’, ’knights’, ’who’, ’say’, ’"Ni"’]

Note that when we are replacing a slice with a single element, it must be
surrounded by square brackets, effectively making it into a list with one
element, to avoid a TypeError exception.

Assignments through slicing differ from those done with simple subscript-
ing in that a slice can change the length of a list, while assignments done
through a single subscript will always preserve the length of the list. This is
true for slices where both of the subscripts are the same. Notice the difference
between the two expressions shown below:

4.2. LIST INDEXING AND SLICING 41

>>> # using a single subscript

>>> x = [’one’,’two’,’three’,’four’,’five’]

>>> x[1] = [’dos’,’tres’,’cuatro’]

>>> x

[’one’, [’dos’, ’tres’, ’cuatro’], ’three’, ’four’, ’five’]

>>> # using a slice

>>> x = [’one’,’two’,’three’,’four’,’five’]

>>> x[1:1] = [’dos’,’tres’,’cuatro’]

>>> x

>>> [’one’, ’dos’, ’tres’, ’cuatro’, ’two’, ’three’, ’four’, ’five’]

In the final example, we were able to insert three elements into an list without
replacing any elements in the list by assigning to a slice where both subscripts
were the same.

Another use of slices is to make a separate modifiable copy of a list. (See
Section 6.1 to understand why this is important.) In this case, you create
a slice without either a starting or ending index. Python will then make a
complete copy of the list

>>> x = [’one’,’two’,’three’]

>>> y = x[:]

>>> y

[’one’, ’two’, ’three’]

One final use of slices is to remove elements from an array. If we try to
replace a single element or slice of an array with an empty list, that empty
list will literally replace the locations to which it’s assigned. But if we replace
a slice of an array with an empty list, that slice of the array is effectively
removed:

>>> a = [1,3,5,7,9]

>>> a[2] = []

>>> a

[1, 3, [], 7, 9]

>>> b = [2,4,6,8]

>>> b[2:3] = []

>>> b

[2, 4, 8]

42 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

Another way to remove items from a list is to use the del statement. You
provide the del statement with the element or slice of a list which you want
removed, and that element or slice is removed without a trace. So to remove
the second element from the list a in the previous example, we would use the
del statement as follows:

>>> del a[2]

>>> a

[1, 3, 7, 9]

The del statement is just as effective with slices:

>>> nums = [’one’,’two’,’three’,’four’,’five’]

>>> del nums[0:3]

>>> nums

[’four’, ’five’]

In the previous example, the same result could be obtained by assigning an
empty list to nums[0:3].

4.3 List Operators

A number of operators are overloaded with respect to lists, making some
common operations very simple to express.

4.3.1 Concatenation

To combine the contents of two lists, use a plus sign (+) between the two
lists to be concatenated. The result is a single list whose length is the total
of the length of the two lists being combined, and which contains all of the
elements of the first list followed by all of the elements of the second list.

>>> first = [7,9,’dog’]

>>> second = [’cat’,13,14,12]

>>> first + second

[7, 9, ’dog’, ’cat’, 13, 14, 12]

Alternatively, you can combine two lists with the expand method (Sec-
tion 4.4).

4.3. LIST OPERATORS 43

Note that list concatenation only works when you’re combining two lists.
To add a scalar to the end of a list, you can either surround the scalar with
square brackets ([]), or invoke the append method (Section 4.4).

4.3.2 Repetition

Like strings, the asterisk (*) is overloaded for lists to serve as a repetition
operator. The result of applying repetition to a list is a single list, with the
elements of the original list repeated as many times as you specify:

>>> [’a’,’b’,’c’] * 4

[’a’, ’b’, ’c’, ’a’, ’b’, ’c’, ’a’, ’b’, ’c’, ’a’, ’b’, ’c’]

Special care needs to be taken when the list being repeated contains only one
element. Note that the expression 3 * 5 is a simple numeric computation,
while

>>> 3 * [5]

[5, 5, 5]

produces a list containing the element 5 repeated 3 times. By surrounding
a list to be repeated with an extra set of square brackets, lists consisting of
other lists can be constructed:

>>> littlelist = [1,2,3]

>>> 3 * littlelist

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> 3 * [littlelist]

[[1, 2, 3], [1, 2, 3], [1, 2, 3]]

4.3.3 The in operator

The in operator provides a very convenient way to determine if a particular
value is contained in a list. As its name implies, you provide a value on the
left hand side of the operator, and a list on the right hand side; an expression
so constructed will return 1 if the value is in the list and 0 otherwise, making
it ideal for conditional statements (Section 6.4). The left hand side can be a
literal value, or an expression; the value on the right hand side can be a list,
or an expression that evaluates to a list.

44 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

Since python’s lists are so flexible, you need to be careful about how you
construct expressions involving the in operator; only matches of the same
type and value will return a value of 1. Consider the list squarepairs, each
of whose elements are a list consisting of a small integer and its square:

>>> squarepairs = [[0,0],[1,1],[2,4],[3,9]]

To see if a list containing the elements 2 and 4 is contained in the squarepairs
list, we could use an expression like the following:

>>> [2,4] in squarepairs

1

Python responds with a 1, indicating that such a list is an element of
squarepairs. But notice that neither element of the list alone would be
found in squarepairs:

>>> 2 in squarepairs

0

>>> 4 in squarepairs

0

The in operator works just as well with expressions that evaluate to elements
in a list:

>>> nums = [0,1,2,3,4,5]

>>> [nums[2]] + [nums[4]] in squarepairs

1

The in operator is also used to iterate over the elements of a list in a for

loop (Section 6.5).

4.4 Functions and Methods for Lists

As mentioned previously the len function will return the number of elements
in a list. When called with a single list argument, the min function returns the
smallest element of a list, and the max function returns the largest. When you
provide more than one argument to these functions, the return the smallest
(min) or largest (max) element among the arguments passed to the function.

4.4. FUNCTIONS AND METHODS FOR LISTS 45

The functions mentioned above accept a list as an argument, and return
the desired result. However, many list operations are performed through
methods instead of functions. Unlike strings (Section 2.4.4), lists are mutable
objects, so many methods which operate on lists will change the list – the
return value from the method should not be assigned to any object.

To add a single element to a list, use the append method. Its single
argument is the element to be appended.

>>> furniture = [’couch’,’chair’,’table’]

>>> furniture.append(’footstool’)

>>> furniture

[’couch’, ’chair’, ’table’, ’footstool’]

If the argument to the append method is a list, then a single (list) element
will be appended to the list to which the method is applied; if you need to
add several elements to the end of a list, there are two choices. You can
use the concatenation operator (Section 4.3.1) or the extend method. The
extend method takes a single argument, which must be a list, and adds the
elements contained in the argument to the end of a list. Notice the difference
between invoking the extend and append methods in the following example:

>>> a = [1,5,7,9]

>>> b = [10,20,30,40]

>>> a.extend(b)

>>> a

[1, 5, 7, 9, 10, 20, 30, 40]

>>> a = [1,5,7,9]

>>> a.append(b)

>>> a

[1, 5, 7, 9, [10, 20, 30, 40]]

(Since the extend method changes the object on which it operates, it was
necessary to reinitialize a before invoking the append method. An alternative
would have been to use the copy function (Section 8.9) to make a copy of
a for the second method.) Note that with extend, the elements of b were
added to a as individual elements; thus the length of a is the total of its
old length and the length of b, but when using append, b is added to a as a
single element; the length of a list is always increased by exactly one when
append operates on it.

46 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

In many cases we want to create a new list incrementally, by adding one
element to the list at a time. As a simple example, suppose we have a list of
numbers and we want to create a second list containing only those numbers
which are less than 0. If we try to append an element to a non-existent list,
it raises a NameError exception:

>>> oldlist = [7, 9, -3, 5, -8, 19]

>>> for i in oldlist:

... if i < 0 : newlist.append(i)

...

Traceback (innermost last):

File "<stdin>", line 2, in ?

NameError: newlist

(Don’t worry if you don’t understand the details of the for and if state-
ments; they will be covered in Sections 6.5 and 6.4, respectively.) The solu-
tion is to assign an empty list to newlist before we begin the loop. Such a
list will have a length of zero, and no elements; the purpose of the assignment
is simply to inform python that we will eventually refer to newlist as a list.

>>> oldlist = [7, 9, -3, 5, -8, 19]

>>> newlist = []

>>> for i in oldlist:

... if i < 0 : newlist.append(i)

...

>>> newlist

[-3, -8]

To add an item to a list at a location other than the end, the insert

method can be used. This method takes two arguments; the first is the
index at which the item is to be inserted, and the second is the item itself.
Note that only one element can be inserted into a list using this method; if
you need to insert multiple items, slicing (Section 4.2) can be used.

To remove an item from a list, based on its value, not its subscript, python
provides the remove method. It accepts a single argument, the value to be
removed. Note that remove only removes the first occurence of a value from
a list.

The reverse and sort methods perform their operations on a list in
place; in other words, when these methods are invoked on a list, the ordering

4.4. FUNCTIONS AND METHODS FOR LISTS 47

of the elements in the list is changed, and the original ordering is lost. The
methods do not return the reversed or sorted lists, so you should never set
a list to the value returned by these methods! If you wish to retain the list
with the elements in their original order, you should copy the list (using the
copy module, not a regular assignment; see Section 6.1 and Section 8.9).

By default, the sort method sorts its numeric arguments in numerical
order, and string arguments in alphabetical order Since a list can contain
arbitrary objects, sort needs to be very flexible; it generally sorts scalar
numeric values before scalar string values, and it sorts lists by first comparing
their initial elements, and continuing through the available list elements until
one list proves to be different than the other.

To sort in some other order than the method’s default, a comparison
function accepting exactly two arguments can be supplied as an argument to
sort This function should be modeled on the built-in function cmp, which
returns 1 if its first argument is greater than the second, 0 if the two argu-
ments are equal, and -1 if the second argument is greater than the first. We’ll
look at function definitions in more detail later, but let’s say we wish to sort
strings, ignoring the case of the strings. The lower function in the string

module can be used to return the lower case version of a string, and if we use
that to compare pairs of values, the strings will be sorted without regard to
case. We can write and use a function to do this comparison as follows:

>>> def nocase(a,b):

... return cmp(a.lower(),b.lower())

...

>>> names = [’fred’,’judy’,’Chris’,’Sam’,’alex’,’Heather’]

>>> copynames = names[:]

>>> names.sort()

>>> names

[’Chris’, ’Heather’, ’Sam’, ’alex’, ’fred’, ’judy’]

>>> names = copynames[:]

>>> names.sort(nocase)

>>> names

[’alex’, ’Chris’, ’fred’, ’Heather’, ’judy’, ’Sam’]

The count method counts how many times a particular value appears in
a list. It accepts a single argument which represents the value you’re looking
for, and returns the number of times that the value appears in the list.

48 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

The index method accepts a single argument, and, if that argument is
found in the list, it returns the index (subscript) of its first occurence. If the
value is not in the list, a ValueError exception is raised.

The following example demonstrates the use of count and index.

>>> food = [’spam’,’spam’,’spam’,’sausage’,’spam’]

>>> food.count(’spam’)

4

>>> food.index(’spam’)

0

Even though “spam” appears four times in the food list, the index method
always returns the index of the first occurence of the value only. If the index
method fails to find the requested element, a ValueError exception is raised.

Related Modules : copy, array, struct
Related Exceptions : IndexError, ValueError

4.5 Tuple Objects

Tuples are very much like lists, except for one important difference. While
lists are mutable, tuples, like strings, are not. This means that, once a tuple
is created, its elements can’t be modified in place. Knowing that a tuple is
immutable, python can be more efficient in manipulating tuples than lists,
whose contents can change at any time, so when you know you won’t need
to change the elements within a sequence, it may be more efficient to use a
tuple instead of a list. In addition, there are a number of situations (argument
passing and string formatting for example) where tuples are required.

Tuples are created in a similar fashion to lists, except that there is no
need for square brackets surrounding the value. When the python inter-
preter displays a tuple, it always surrounds it with parentheses; you can use
parentheses when inputting a tuple, but it’s not necessary unless the tuple is
part of an expression. This creates a slight syntactic problem when creating
a tuple with either zero or one element; python will not know you’re creating
a tuple. For an empty (zero-element) tuple, a pair of empty parentheseis (())
can be used. But surrounding the value with parentheses is not enough in
the case of a tuple with exactly one element, since parentheses are used for
grouping in arithmetic expression. To specify a tuple with only one element
in an assignment statement, simply follow the element with a comma. In

4.6. OPERATORS AND INDEXING FOR TUPLES 49

arithmetic expressions, you need to surround it with parentheses, and follow
the element with a comma before the closing parenthesis.

For example, suppose we wish to create a new tuple which concatenates
the value 7 to the end of an existing tuple:

>>> values = 3,4,5

>>> values + (7)

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: illegal argument type for built-in operation

>>> values + (7,)

(3, 4, 5, 7)

>>> newvalue = 7,

>>> values + newvalue

(3, 4, 5, 7)

Without the closing comma, python regards the value (7) as just a single
number, and raises a TypeError exception when we try to concatenate it to
an existing tuple. The closing comma identifies the expression as a single-
element tuple, and concatenation can be performed.

Like lists, the contents of tuples are arbitrary. The only difference is that
lists are mutable and tuples are not.

4.6 Operators and Indexing for Tuples

The same operators mentioned in Section 4.3 for lists apply to tuples as
well, keeping in mind that tuples are immutable. Thus, slicing operations for
tuples are more similar to strings than lists; slicing can be used to extract
parts of a tuple, but not to change them.

4.7 Functions and Methods for Tuples

Since tuples and lists are so similar, it’s not surprising that there are times
when you’ll need to convert between the two types, without changing the
values of any of the elements. There are two builtin functions to take care
of this: list, which accepts a tuple as its single argument and returns a list
with identical elements, and tuple which accepts a list and returns a tuple.

50 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

These functions are very useful for resolving TypeError exceptions involving
lists and tuples.

There are no methods for tuples; however if a list method which doesn’t
change the tuple is needed, you can use the list function to temporarily
change the tuple into a list to extract the desired information.

Suppose we wish to find how many times the number 10 appears in a
tuple. The count method described in Section 4.4 can not be used on a
tuple directly, since an AttributeError is raised:

>>> v = (7,10,12,19,8,10,4,13,10)

>>> v.count(10)

Traceback (innermost last):

File "<stdin>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’count’

To solve the problem, call the list function with the tuple as its argument,
and invoke the desired method directly on the object that is returned:

>>> list(v).count(10)

3

Note, however, that if you invoke a method which changes or reorders the
values of a temporary list, python will not print an error message, but no
change will be made to the original tuple.

>>> a = (12,15,9)

>>> list(a).sort()

>>> a

(12, 15, 9)

In case like this, you’d need to create a list, invoke the method on that list,
and then convert the result back into a tuple.

>>> aa = list(a)

>>> aa.sort()

>>> a = tuple(aa)

>>> a

(9, 12, 15)

4.8. DICTIONARIES 51

4.8 Dictionaries

Dictionaries (sometimes refered to as associative arrays or hashes) are very
similar to lists in that they can contain arbitrary objects and can be nested
to any desired depth, but, instead of being indexed by integers, they can be
indexed by any immutable object, such as strings or tuples. Since humans can
more easily associate information with strings than with arbitrary numbers,
dictionaries are an especially convenient way to keep track of information
within a program.

As a simple example of a dictionary, consider a phonebook. We could
store phone numbers as tuples inside a list, with the first tuple element being
the name of the person and the second tuple element being the phone number:

>>> phonelist = [(’Fred’,’555-1231’),(’Andy’,’555-1195’),(’Sue’,’555-2193’)]

However, to find, say, Sue’s phone number, we’d have to search each element
of the list to find the tuple with Sue as the first element in order to find the
number we wanted. With a dictionary, we can use the person’s name as the
index to the array. In this case, the index is usually refered to as a key. This
makes it very easy to find the information we’re looking for:

>>> phonedict = {’Fred’:’555-1231’,’Andy’:’555-1195’,’Sue’:’555-2193’}

>>> phonedict[’Sue’]

’555-2193’

As the above example illustrates, we can initialize a dictionary with a comma-
separated list of key/value pairs, separated by colons, and surrounded by
curly braces. An empty dictionary can be expressed by a set of empty curly
braces ({}).

Dictionary keys are not limited to strings, nor do all the keys of a dic-
tionary need be of the same type. However, mutable objects such as lists
can not be used as dictionary keys and an attempt to do so will raise a
TypeError. To index a dictionary with multiple values, a tuple can be used:

>>> tupledict = {(7,3):21,(13,4):52,(18,5):90}

Since the tuples used as keys in the dictionary consist of numbers, any tuple
containing expressions resulting in the same numbers can be used to index
the dictionary:

52 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

>>> tupledict[(4+3,2+1)]

21

In addition to initializing a dictionary as described above, you can add
key/value pairs to a dictionary using assignment statements:

>>> tupledict[(19,5)] = 95

>>> tupledict[(14,2)] = 28

To eliminate a key/value pair from a dictionary use the del statement.

4.9 Functions and Methods for Dictionaries

As is the case for strings and lists, the len function returns the number of
elements in a dictionary, that is, the number of key/value pairs. In addition,
a number of methods for dictionaries are available.

Since refering to a non-existent key in a dictionary raises a KeyError

exception, you should avoid indexing a dictionary unless you’re sure of the
existence of an entry with the key you are using. One alternative is to use
a try/except clause (Section 1.4.5) to trap the KeyError. Two methods
are also useful in this situation. The has_key method returns 1 (true) if the
specified dictionary has the key which the method accepts as an argument,
and 0 (false) otherwise. Thus, an if clause (Section 6.4) can be used to take
action if a specified key does not exists. The get method also accepts a key
as an argument, but it returns the value stored in the dictionary under that
key if it exists, or an optional second argument if there is no value for the key
provided. With only one argument, get returns the value None when there
is no value corresponding to the key provided.

As an illustration of these methods, suppose we are counting how many
times a word appears in a file by using each word as a key to a dictionary
called counts, and storing the number of times the word appears as the
corresponding value. The logic behind the program would be to add one to
the value if it already exists, or to set the value to one if it does not, since
that will represent the first time the word is encountered. Here are three
code fragments illustrating the different ways of handling a value stored in
word which may or may not already be a key in the dictionary. (Remember
that counts would have to be initialized to an empty dictionary before any
elements could be added to it.)

4.9. FUNCTIONS AND METHODS FOR DICTIONARIES 53

method 1: exceptions

try:

counts[word] = counts[word] + 1

except KeyError:

counts[word] = 1

method 2: check with has_key

if counts.has_key(word):

counts[word] = counts[word] + 1

else:

counts[word] = 1

method 3: use get

counts[word] = counts.get(word,0) + 1

Although the third method is the shortest, it may not be obvious why it
works. When an entry with the specified key already exists, the get method
will return that entry and increment it by 1. If the key does not exist, the
optional second argument to get forces it to return a value of 0, which, when
incremented by 1 gives the correct initial value.

As of version 2.2, it is possible to iterate over a dictionary using a for

loop; the operation will return the keys of the dictionary in an arbitrary
order. In addition, the in operator can be used as an alternative to the
has key method to determine if a particular key is present in a dictionary.

A few other methods provide alternative ways of accessing the keys, values
or key/value pairs of a dictionary. The keys method returns a list of just the
keys of a dictionary, and the values method returns a list of just the values.
While the returned lists have their elements stored in an arbitrary order,
corresponding elements in the two lists will be key/value pairs. The items

method returns a list of tuples consisting of all the key/value pairs. Returning
to the example using names as keys and phone numbers as values, here are
the results of invoking these three methods on the phonedict dictionary:

>>> phonedict = {’Fred’:’555-1231’,’Andy’:’555-1195’,’Sue’:’555-2193’}

>>> phonedict.keys()

[’Fred’, ’Sue’, ’Andy’]

>>> phonedict.values()

[’555-1231’, ’555-2193’, ’555-1195’]

54 CHAPTER 4. LISTS, TUPLES AND DICTIONARIES

>>> phonedict.items()

[(’Fred’, ’555-1231’), (’Sue’, ’555-2193’), (’Andy’, ’555-1195’)]

To remove all the elements of a dictionary, use the clear method. This
differs from using the del operator on the dictionary in that the dictionary,
although empty, still exists. To make a copy of a dictionary, use the copy

method; remember that assignment of a dictionary to another variable may
not do what you think (Section 6.1).

Python provides the update method to allow your to merge all the key/value
pairs in one dictionary with those in another. If the original dictionary has
an entry with the same key as one in the dictionary used for updating, the
value from the dictionary used for updating will be placed in the original
dictionary.

>>> master = {’orange’:3,’banana’:5,’grapefruit’:2}

>>> slave = {’apple’:7,’grapefruit’:4,’nectarine’:3}

>>> master.update(slave)

>>> master

{’banana’: 5, ’orange’: 3, ’nectarine’: 3, ’apple’: 7, ’grapefruit’: 4}

Since both master and slave had entries for the key “grapefruit”, the value
found in master after the call to update is the one which was in slave.

Chapter 5

Input and Output

5.1 The print command

The fastest way to print the value of an object in python is with the print
command. You provide the command with a comma separated list of ob-
jects, and it displays them with spaces between each object, and a newline
added at the end. The newline can be supressed by terminating the print
command with a comma. The print command is capable of producing a
printed representation of any type of python object, but does not provide
much control over the appearance of the output. Thus, it’s ideal for quick
interactive jobs or short programs where the appearance of the output is not
critical.

For more control over the appearance of the output, you can first format
the object you wish to print (Section 5.2); to direct output to a file, see
Section 5.4

5.2 Formatting Strings

In python, string formatting is performed through overloading of the percent
operator (%) for string values. On the left hand side of the operator, you
provide a string which is a combination of literal text and formatting codes.
Each appearance of a formatting code is matched with an object in a tuple,
which appears on the right hand side of the percent sign. The resultant
string (which is suitable for printing) replaces the formatting codes with
formatted versions of the objects in the tuple. A brief description of the

55

56 CHAPTER 5. INPUT AND OUTPUT

Code Meaning

d or i Decimal Integer
u Unsigned Integer
o Octal Integer

h or H Hexadecimal Integer
f Floating Point Number

e or E Floating Point Number: Exponential Notation
g or G Floating Point Number: “Optimal” Notation
s String value - also provides string representation of any object
c Single character
% Literal percent sign

Table 5.1: Formatting Codes

formatting codes is shown in Table 5.2. The formatting codes are preceded
with a percent sign, and, optionally, a number which indicates the number
of columns which should be used to format the value. For floating point
numeric values, the percent sign can optionally be followed by two numbers
separated by a period (.); in this case the first number is the field width,
and the second number is the number of digits to display after the decimal
point. For example, to produce a string called fstring which contains the
number 7, formatted with three zeroes after the decimal point, we could use
a statement like the following:

>>> fstring = ’The number is %5.3f’ % (7)

>>> fstring

’The number is 7.000’

Notice that the field width was specified as 5, because it needs to be wide
enough to display the number along with the decimal point.

The %g and %G formatting codes will use normal notation when the expo-
nent of a number is greater than -4, and the specified width is sufficient to
display the number. If either of these conditions is not true, then exponential
notation will be used.

The right hand argument to the percent sign must contain a tuple, al-
though parentheses are not strictly required when there is exactly one ar-
gument to be formatted. With multiple items to be formatted, the format
specifications and values are matched one-to-one.

5.3. USING NAMES IN FORMAT STRINGS 57

>>> print ’%d items at %5.2f per item gives a total of $%4.2f’ % \

... (7,.29,7 * .29)

7 items at 0.29 per item gives a total of $2.03

If you fail to provide the proper number of arguments to be converted, a
TypeError is raised.

5.3 Using Names in Format Strings

As an alternative to the method described in the previous section, where the
arguments to be formatted had to be in a tuple, python allows you to use a
dictionary to contain the values to be formatted, and to use the dictionary’s
keys within the format string for added readability. To use this feature, put
the appropriate key, surrounded in parentheses, between the percent sign
and the format code of the appropriate element in the format string. For
example, suppose the information to be formatted in the previous section
was stored in a dictionary as follows:

>>> info = {’quantity’:7,’itemprice’:.29,’totalprice’:7 * .29}

Then we could produce the same result as the previous example with the
following print statement:

>>> print ’%(quantity)d items at %(itemprice)5.2f ’ \

... ’per item gives a total of $%(totalprice)4.2f’ % info

7 items at 0.29 per item gives a total of $2.03

Notice that python concatenated the two pieces of the formatting string, due
to the presence of the backslash at the end of the first line.

5.4 File Objects

In python, access to files is provided through a file object, which is created
by calling the builtin open function. Once such an object is created, a large
number of methods are available for accessing the file, both for reading and
writing.

The open function takes between one and three arguments. The first,
which is the only required argument, is the name of the file to open. The

58 CHAPTER 5. INPUT AND OUTPUT

String Meaning

r Open file for reading; file must exist.
w Open file for writing; will be created if it doesn’t exist
a Open file for appending; will be created if it doesn’t exist
r+ Open file for reading and writing; contents are not destroyed
w+ Open file for reading and writing; contents are destroyed
a+ Open file for reading and writing; contents are not destroyed

Table 5.2: File modes for the open function

second is a string which describes the action(s) that you plan to do to the
file, as illustrated in Table 5.2. If you do not provide a second argument, the
default is ’r’, that is, the file is opened for reading. A ’b’ can be appended
to the second argument to indicate that the file to be opened is a binary file
as opposed to a text file; this is only meaningful under operating systems like
Windows which make a distinction between text files and binary files, and,
when omitted, often causes problems when porting a program to such an
operating system. Finally, the optional third argument specifies information
about how the file should be buffered; a value of 0 means no buffering, a
value of 1 means line buffering, and any other positive value indicates the
size of the buffer to be used. (In this context, the buffer controls the amount
of information that is manipulated in memory before any action is actually
taken on the file.) In most cases, there should be no need to provide open with
a third argument. Unfortunately, there is no way to unbuffer standard output
inside an executing program; if you need standard output to be unbuffered,
you must invoke python with the -u flag.

When specifying a filename under Windows, you can use a single back-
slash (\), a double backslash (\\), or a single forward slash (/) as a file
separator. A single backslash should be used with caution, because all of the
backslashed sequences in Table 2.1 will still retain their usual meaning.

If python encounters a problem when opening a file, it will issue an
IOError exception, along with a more detailed message describing the prob-
lem. Thus, it is a wise practice to open files inside a try/except clause to
prevent your program from terminating ungracefully when there’s a problem
opening a file.

Once you have successfully opened a file, there are a number of methods
which can be invoked by the file object returned by open. The following

5.4. FILE OBJECTS 59

subsections describe some of these methods.

5.4.1 Methods for Reading

The readline method reads a single line from a file, including its terminating
newline. (Under Windows, when Python reads text from a file, it discards
the line feed which is on each line, leaving just a newline character.) To
eliminate this newline, a common practice is to replace the read line with a
string slice which eliminates the last character of the line:

>>> f = open(’inputfile’,’r’)

>>> line = f.readline()

>>> line

’Line one\012’

>>> line = line[:-1]

>>> line

’Line one’

Each call to the readline method will read the next line in the file until the
contents of the file are exhausted; from that point on, python will return a
completely empty string (i.e. no blanks or newlines), until the file is rewound
(Section 5.4.4) or closed and reopened. If the goal is to process all of a file,
however, you can iterate over each line of the file directly using a for loop
(Section 6.5).

The readlines method reads an entire file in a single call and returns a
list consisting of all of the lines in the file; each element of the list returned by
readlines contains one line (including the terminating newline) from the file.
Once the readlines method is invoked once, subsequent calls on the same
file object will return an empty list, unless the file is rewound (Section 5.4.4)
or closed and reopened.

The read method reads an entire file in a single call and returns the
contents of the file in a scalar string variable, with newlines embedded within
the string. An optional integer argument n limits the amount of data read
to n bytes.

Note that the readlines and read methods both read the entire contents
of a file into memory, and may cause problems when reading very large files.

60 CHAPTER 5. INPUT AND OUTPUT

5.4.2 Methods for Writing

Before discussing the available methods for writing to a file, remember that,
in order to write to a file, the file must be opened with either the ’w’ (write)
or ’a’ (append) modes. Furthermore, the objects to be written must be
strings - no automatic conversion of of numbers to strings is carried out.

The write method takes a single scalar argument and writes it to the
file represented by the file object on which it operates. Note that, unlike
the print command, the write method does not automatically append a
newline character to its argument. One consequence of this is that you can
safely write binary files, or files with embedded null characters, using the
write method. If you are writing a binary file, remember to append a ’b’ to
the second argument of the open function as described in Section 5.4.

The writelines method accepts a list argument, and writes each element
of the list to the specified file as if a call to the write method had been made;
no newlines are added to the output.

5.4.3 “Printing” to a File

Since the write method does not append a newline character to each line
which it writes to a file, it is often inconvenient to convert a program which
uses the print statement (which does append newlines) to one which will
direct its output to a file. To make this easier, an extended form of the print
statement was introduced in version 2 of python. To use this form, it is still
necessary to create a file object which is opened for writing, but instead of
invoking the write method, the file object can be specified on the print

statement, preceded by two right brackets (>>), and followed by a comma.
Thus, if we had a program which was designed to print to standard output
with a statment like

print msg;

we could modify it to write to a file called “output.file” by first creating
a file object suitable for writing:

try:

outfile = open(’output.file’,’w’)

except IOError:

print ’output.file could not be opened’

sys.exit(1)

5.4. FILE OBJECTS 61

and then using the following print statement:

print >> outfile, msg;

5.4.4 Other Methods

The close method can be used to close a file after you are done reading or
writing to it. While python will automatically close open files when you try
to re-open them, and at the end of your program, it still is a good idea to
explicitly close files when you are done using them.

When using buffered input or output, it may occasionally be useful to
use the flush method to insure that the file’s buffer is emptied.

The tell method returns the current offset of the file object in bytes.
This is the location in the file where the next operation (read or write) will
take place. To set the file pointer to a particular offset within the file, use
the seek method. This method takes two arguments. The first is the desired
offset (in bytes), and the second argument, which is optional, tells the system
if the offset is from the beginning of the file (an argument of 0, the default),
from the current position (an argument of 1) or from the end of the file (an
argument of 2). A read or write operation following a call to seek will then
be operating at the location specified. While there is no explicit “rewind”
method provided, you can set the file offset to 0 for a file object f with the
call

f.seek(0)

effectively setting the file back to the beginning.
The truncate method accepts a number of bytes as its argument and

changes the length of the file being operated on to that many bytes. If the
file is shorter than the number of bytes specified, it will be padded with null
characters (binary zeroes, not blanks).

5.4.5 File Object Variables

Along with the methods described above, file objects also contain several
variables, often refered to as attributes, containing information about the
file which the file object represents. These attributes are accessed just like
methods, except that, since they are variables, they accept no arguments,
and need no parentheses when accessed. The name attribute is a character

62 CHAPTER 5. INPUT AND OUTPUT

string containing either the name of the file or a description of its source.
The closed attribute is an integer variable which is 1 if the file is closed, and
0 if the file is open. The mode attribute is a variable containing a character
string, similar to the one passed to open indicating the mode through which
the file was opened. Each of these attributes is read-only, and attempts to
change them will result in a TypeError.

5.5 Standard Input and Output Streams

In a UNIX-style operating system, there are three so-called “streams”, which
represent file-like objects through which input to and output from programs
is directed. The stream known as standard input generally represents the
keyboard and is the basic source of user input to text-based programs. The
streams known as standard output and standard error are the default desti-
nations for output from programs, and generally represent the screen of the
user’s computer. For many simple tasks, Python provides functions so that
you don’t have to deal with these streams directly. For example, the print

statement directs its output to the standard output stream; the raw input

function reads its input from the standard input stream. Using these func-
tions, you can establish a simple dialog with a user:

name = raw_input(’What is your name? ’)

flavor = raw_input(’What is your favorite ice cream flavor? ’)

print ’Hi, %s, I like %s too’ % (name,flavor)

The raw input function writes its argument to standard output (usually the
computer screen), reads a line from standard input (usually the keyboard),
strips the trailing newline from the response, and returns it.

Even for more complex use of the standard streams, there is no need to
explicitly open or close them; they are defined as file object attributes of the
sys module with the names stdin for standard input, stderr for standard
error, and stdout for standard output. Since they are defined as file objects,
they can be manipulated like any other file. For example, it is often useful to
read the input for a program from a file name if one is provided on a command
line, or from the keyboard (standard input) if no file name is provided. The
following program checks to see if a filename is given on the command line
by examining the length of the argv variable of the system]module, and

5.6. PIPES 63

then decides whether to take its input from a file or from the standard input.
(See Section 8.8 for more information about argv.)

import sys

if len(sys.argv) > 1:

try:

f = open(sys.argv[1],’r’)

except IOError:

print >>sys.stderr, ’Error opening %s\n’ % sys.argv[1]

sys.exit(1)

else:

f = sys.stdin

while 1:

line = f.readline()

. . .

Since sys.stdin is just a file object, reading from standard input is no
different than reading from any other file. Notice that the error message
from the program was directed to standard error, and not standard output.
When you’re writing a program and you wish to produce an error message,
it’s a good idea to write the error message to the stderr stream rather than
relying on the default behaviour of the print command (which is to write
to stdout). When you use stderr, error messages will still appear on the
user’s screen, even if they have redirected the standard output stream to a
file.

Since the sys.stdout stream is already open when you invoke python, it
is not possible to pass a third argument to open (See Section 5.4) in order
to make output to this stream unbuffered. If you need sys.stdout to be
unbuffered (so that, for example, redirected output is written immediately
instead of waiting until a buffer is filled), you can invoke python with the -u

option (/u under Windows).

5.6 Pipes

Sometimes, instead of reading input from a file, it’s necessary to read input
which comes from an program. For example, many operating system com-

64 CHAPTER 5. INPUT AND OUTPUT

mands produce output which is not in a very convenient format; one of the
important uses of languages like python is to be able to extract useful infor-
mation from such commands, and present it in an appropriately formatted
way. Similarly, it is very useful to be able to have python send its output
to a command. For example, you may need to perform a statistical analysis
by having python gather data and then send it to a program to perform the
analysis. When you read output from a command or send output to a com-
mand the input stream to your program is known as a pipe. In python, you
can open a pipe using the popen function of the os module So somewhere
near the beginning of your program you need a line like

import os

to import the entire os module or

from os import popen

to bring just popen into the local namespace. In the examples that follow, I’ll
assume that the entire module has been imported. While this may not be the
most efficient route, one benefit is that it’s always very clear where a function
like popen is coming from, since it needs to be refered to as os.popen.

One benefit of object-oriented programming is that, if the object returned
by os.popen is designed to support the same methods as a file object, then
the only difference between working with files and working with pipes is that
different functions are used to initially create the objects on which these
methods are invoked. This is exactly the way a pipe object is designed.
Furthermore, the arguments to os.popen are exactly the same as those to
the built-in open command, except that the first argument to os.popen is
interpreted as an operating system command instead of a file name.

For example, suppose we want to read the output of the UNIX df com-
mand, which provides information about the space being used on a com-
puter’s hard drives. The output of the command might look something like
this:

Filesystem 1024-blocks Used Available Capacity Mounted on

/dev/hda1 1398534 1102892 223370 83% /

/dev/hdb1 2970455 2060577 756261 73% /new

/dev/hdb2 2970487 2540561 276307 90% /new1

5.6. PIPES 65

The goal of the program would be to add together the three columns which
provide the amount of information about the drives and print a total for each
column, along with an overall percentage of the capacity of the drives.

After opening a pipe to the command with os.popen, we can break apart
each line and extract the numbers, add them together, and report the desired
information:

import os,sys

try:

df = os.popen(’df -k’,’r’)

except IOError:

stderr.write(’Couldn\’t run df command\n’)

sys.exit(1)

tot = used = avail = 0

while 1:

line = df.readline()

if not line : break

line = line[:-1]

if line[:10] == ’Filesystem’ : continue

parts = line.split()[1:]

tot = tot + int(parts[0])

used = used + int(parts[1])

avail = avail + int(parts[2])

print ’Total: %d Used: %d Avail: %d Capacity %2.0f%%’ % \

(tot,used,avail,float(used)/float(tot) * 100.)

If the program was stored in a file called df.py, and was made executable,
it would produce the following output:

% df.py

Total: 7339476 Used: 5704030 Avail: 1255938 Capacity 78%

66 CHAPTER 5. INPUT AND OUTPUT

Chapter 6

Programming

6.1 Assignments

One of the basic operations in any computer language is the assignment
statement. The assignment statement allows us to associate a variable name
with a value, so we can more easily manipulate our data. In python, like many
other languages, the equal sign (=) is used to assign a value to a variable; the
variable name is put on the left hand side of the equal sign, and the value
(any valid python expression) is put on the right hand side of the equal sign.
Some simple examples of assignment statements follow:

>>> x = 3

>>> y = ’This is a string’

>>> z = x + 3

>>> y = abs(-7)

>>> vegies = [’broccoli’,’peas’,’carrots’]

>>> meal = vegies

Assignment statements can be chained; if you need to set several variables to
the same value, you can simply extend the assignment to each of the variables
in a single statement:

>>> count = number = check = 0

All three variables (count, number, and check) will have the value 0 after this
assignment. Note that, when using the python interpreter interactively, these
assignment statements don’t produce any output. (Of course, you can simply

67

68 CHAPTER 6. PROGRAMMING

type the name of any variable of interest, and its value will be displayed in
interactive mode.)

Another handy feature of the assignment operator in python is that it
supports multiple assignments. If you have a comma separated list of vari-
ables on the left hand side of the equal sign, and an equal number of comma
separated expressions on the right hand side, python assigns each variable to
its corresponding expression:

>>> zero,one,ten = 0,1,10

>>> all = first,last = [’john’,’smith’]

The second example shows how the ideas of chaining and multiple assign-
ment can be combined; the variable first has the value “john”, second has
the value “smith”, and all is a list containing the two values. This sort
of technique can be used with any expression that evaluates to a sequence
(string, list or tuple).

While the internal details of python should usually not concern you, there
is one aspect of the assignment statement which needs to be understood to
program effectively in python. Consider the following assignment statements:

assignment of values

>>> x = 3

>>> z = x + 4

>>> breakfast = ’spam’

>>> names = [’Fred’,’Sam’,’Harry’]

assignments using variables

>>> friends = names

>>> y = x

>>> meal = breakfast

In the first set of assignments, the values for the assignment consisted of
literal strings, numbers or lists, or expressions involving such quantities. In
these cases, those values are stored in memory, and will be associated with
their assigned names until you actively change them, or python is finished
with your program.

But when you make assignments of one variable name to another, python
actually stores a reference to the variable, that is, instead of creating a new
copy of the contents of the original variable, it stores information about where
the original variable is stored, and, when the new variable is later referenced,

6.1. ASSIGNMENTS 69

it goes back to this location to find the value of the variable. Thus, the
statement

>>> x = 3

tells python to store the integer value 3 in a location associated with the
variable name x, but the statement

>>> y = x

tells python to store the location of the variable x in the variable y, and to
use the value stored at that location as the value of y. This is one of several
design features of python that help to keep the language efficient. To prevent
you from losing your data, python keeps track of how many times a variable
is referenced, and, if you change the value of a variable to which another
variable has a reference, it copies the variable’s value before it destroys it,
so that the variable referencing it will continue to have the value you would
expect it to have.

With scalar variables, it would be difficult to construct a situation where
this scheme would produce surprising results, since once a reference’s value
is changed, python automatically updates the values of any variables which
were referring to that value. With mutable objects such as lists, however,
changes within the list do not initiate this updating mechanism, and sur-
prising results can occur.

To illustrate, suppose we create a scalar variable, and assign it to a second
variable:

>>> sound = ’Ni’

>>> knight = sound

If we change the value of the variable sound, python will update the value of
knight so that the value is not lost:

>>> sound = ’Arf’

>>> sound

’Arf’

>>> knight

’Ni’

Now consider the case of a list. We’ll create a list, then assign it to
another variable:

70 CHAPTER 6. PROGRAMMING

>>> foods = [’spam’,’spam’,’spam’,’sausage’,’spam’]

>>> meal = foods

If we assign an entirely new value to foods, python will update the value
of meal so that it contains the original list, since it is now the only variable
refering to that original list:

>>> foods = [’beans’,’spam’,’eggs’]

>>> meal

[’spam’, ’spam’, ’spam’, ’sausage’, ’spam’]

But if we modify only part of the list, python will retain the reference so that
meal will have the value of the modified list:

>>> foods = [’spam’,’spam’,’spam’,’sausage’,’spam’]

>>> meal = foods

>>> foods[1] = ’beans’

>>> foods

[’spam’, ’beans’, ’spam’, ’sausage’, ’spam’]

>>> meal

[’spam’, ’beans’, ’spam’, ’sausage’, ’spam’]

Even though we didn’t explicitly change any of the values stored through the
name meal, you can see that meal is still refering to the (now modified) list
stored under the name foods.

Python provides some tools to help you deal with this situation. The copy
module (Section 8.9) provides a function called copy which will actually make
a copy of a list, instead of simply storing a reference. Thus, if we wanted to
insure that meal contained the original elements of foods even if foods got
modified, we could invoke this function instead of using an assignment:

>>> import copy

>>> foods = [’spam’,’spam’,’spam’,’sausage’,’spam’]

>>> meal = copy.copy(foods)

>>> foods[1] = ’beans’

>>> foods

[’spam’, ’beans’, ’spam’, ’sausage’, ’spam’]

>>> meal

[’spam’, ’spam’, ’spam’, ’sausage’, ’spam’]

6.1. ASSIGNMENTS 71

A similar result can be obtained by assigning a slice of an array where no
starting or ending index is provided. Instead of calling the copy function, we
could have made a true copy of foods in meal with a statement like

>>> meal = foods[:]

The is operator can be used to find out if one variable is a reference to
another. Like the logical equals operator (==, Section 6.3), the is operator
returns 1 or 0 depending on whether or not the two objects being compared
are actually references to the same thing. (The equals operator simply checks
to see if they are of the same type, and contain the same values.) We can
study the behavior of the is operator by inserting a few additional statements
in the above example:

>>> foods = [’spam’,’spam’,’spam’,’sausage’,’spam’]

>>> meal1 = foods

>>> meal2 = copy.copy(foods)

>>> foods == meal1

1

>>> foods is meal1

1

>>> foods == meal2

1

>>> foods is meal2

0

>>> foods[1] = ’beans’

>>> foods == meal1

1

>>> foods is meal1

1

>>> foods == meal2

0

>>> foods is meal2

0

When a list is copied to another variable, its contents are identical to the
original variable; thus the test for equality is true (i.e. 1). But since the
contents of foods were actually copied to meal2, meal2 is not a reference to
foods, and the is operator returns a false value (i.e. 0).

72 CHAPTER 6. PROGRAMMING

6.2 Indentation

Unlike most programming languages, where indentation is used simply to
improve readability of programs, python uses indentation to signal the be-
ginning and end of blocks of statements, that is, groups of statements which
will be executed together based on the value of some condition, or the occur-
rence of an exception. The first statement of your programs must start in the
very first column, and within each indented block, you must be consistent
in the amount of indentation you use. Although not strictly required, most
python programmers try to be consistent in their indentation from block
to block as well. The task of writing properly indented programs is made
much easier if you use an editor which is python-aware; emacs and vim are
examples of such editors, as well as the IDLE or pythonwin programming
environments supplied as part of python distributions.

Although it takes some getting used to, using identation to group state-
ments together has some definite benefits. Since there are no brackets or
keywords involved in delineating blocks of statements, no decisions need to
be made as to whether the delineators should appear on the same line as
program statements, or if they should line up with the beginnings or ends
of blocks. The result of this is that most python programs look very simi-
lar, even if they were written by different people, making “foreign” python
programs much easier to read and understand. In addition, since the in-
dentation of a program actually determines its structure, python programs
provide easy-to-see visual clues to help you understand what a program is
doing.

6.3 Truth, Falsehood and Logical Operators

When you write a program and need to execute statements only under certain
conditions, the if statement (Section 6.4) can be used; similarly, when you
want to repeatedly execute commands until some condition becomes true or
false, the while statement (Section 6.7) can be used. But before looking
at the mechanics of these statements, it’s important to understand python’s
ideas of what is true and false.

In python, numeric values are false if they are equal to zero, and true
otherwise; sequence objects (like strings and lists) are false if they contain no
elements, and are true otherwise. Similarly, a dictionary is false if it has no

6.3. TRUTH, FALSEHOOD AND LOGICAL OPERATORS 73

Operator Tests for Operator Tests for

== Equality != Non-equality
> Greater than < Less than
>= Greater than or equal <= Less than or equal
in Membership in sequence is Equivalence

not in Lack of membership not is Non-equivalence

Table 6.1: Comparison Operators

keys or values and is true otherwise. Finally, the special python value None

also evaluates to false. It should be noted that, while assignment statements
do evaluate to a value, they can not be used as tests in if or while loops.
Because of this, it is very common in python to use a so-called “infinite” loop,
where the argument of a while clause is set to 1, and break statements are
used to insure that the loop will be properly terminated. (See Section 6.7 for
details)

More commonly, however, logical expressions are created using binary
comparison operators. These operators return 0 if the test they represent is
false, and 1 if the test is true. They are summarized in Table 6.1.

You can combine logical expressions with the keywords and or or. When
you combine two logical expressions with an and, both of the statements
being combined must be true for the overall expression to be considered
true. When you use an or to combine two statements, the overall statement
is true if either of the statements being combined are true. You can use as
many ands and ors as you need to create expressions to test for complex
conditions, and you can freely use parentheses to make sure that python
understands exactly what you mean.

One subtlety of the logical expressions has to do with what are often
called side effects. For reasons of efficiency, python will only evaluate a logi-
cal expression (from left to right) until it can determine whether or not the
expression is true. What this means is that if you combine two logical ex-
pressions with an and, python will never even evaluate the second expression
if the first expression is false, because, once the first expression is false, the
value of the second expression doesn’t matter — overall, the combined ex-
pression must be false. Similarly, if you combine two logical expressions with
an or, then if the first expression is true, the second expression isn’t eval-
uated, since the combined expression must be true regardless of the second

74 CHAPTER 6. PROGRAMMING

expression’s value. This can lead to strange behavior of your programs if
you’re not prepared for it.

Suppose we have a character string and we want to count the number
of words in the string, but only if the length of the string is greater than
5. In the code that follows, I’m purposely making an error. I’m refering to
the split function of the string module without properly importing the
module:

>>> str = ’one’

>>> if len(str) > 5 and len(split(str,’ ’)) > 3:

... print ’too many words’

...

When I run this program, I don’t see any error, even though I purposely
refered to the split function which had not been properly imported. If the
length of the string is greater than 5 however, the second part of the logical
expression must be evaluated, and python informs us of the error:

>>> str = ’one two three four’

>>> if len(str) > 5 and len(split(str,’ ’)) > 3:

... print ’too many words’

...

Traceback (innermost last):

File "<stdin>", line 1, in ?

NameError: split

The moral of this example is that it’s important to understand python’s
logic when it evaluates logical expressions, and to realize that not all of the
code in your logical expressions will actually be executed every time that it’s
encountered.

6.4 if statement

The if statement, along with optional elif and/or else statements is the
basic tool in python for performing conditional execution. The basic form of
the statement can be summarized as:

if expression :

statement(s)

6.4. IF STATEMENT 75

elif expression:

statement(s)

elif expression:

statement(s)

. . .

else:

statements

Python evaluates the expression after the if, and, if it is true, carries out the
statement(s) which follow; if it is not true, it proceeds to the elif statement
(if there is one), and tests that expression. It continues testing the expres-
sions associated with any elif statements, and, once it finds an expression
that is true, it carries out the corresponding statement(s) and jumps to the
statement following the end of the if block. If it doesn’t encounter any true
expressions after trying all the elif clauses, and there is an else statement
present, it will execute the statements associated with the else; otherwise,
it just continues with the statement following the if block. Notice that once
python encounters a true expression associated with an if or elif statement,
it carries out the statements associated with that if or elif, and doesn’t
bother to check any other expressions. One implication of this is that if you
need to test a number of possibilities where only one can be true, you should
always use a set of if/elif clauses so that no extra work is done once the
true expression has been found. For example, suppose we wish to do one of
three different tasks depending on whether a variable x has the value 1, 2,
or 3. Notice the subtle difference between these two pieces of code:

first method - execution stops once the correct choice is found

if x == 1:

z = 1

print ’Setting z to 1’

elif x == 2:

y = 2

print ’Setting y to 2’

elif x == 3:

w = 3

print ’Setting w to 3’

second method - all three tests are done regardless of x’s value

if x == 1:

76 CHAPTER 6. PROGRAMMING

z = 1

print ’Setting z to 1’

if x == 2:

y = 2

print ’Setting y to 2’

if x == 3:

w = 3

print ’Setting w to 3’

Since x can only have one value, there’s no need to test its value once the
appropriate task is performed.

6.5 for loops

The for loop allows you to iterate over all the values in a sequence (string,
list or tuple), performing the same task on each of the elements. In addition,
starting with version 2.0, it’s possible to iterate over other objects, such as
file objects or dictionaries. The basic form of the for loop is:

for var in sequence:

statements

else:

statements

As with the if statement, there must be a colon at the very end of the
for statement. The variable var is a “dummy” variable; its value is defined
locally with the for loop, but when the for loop is completed, it will be
equal to the last element in the sequence being processed.

Unlike the for statement, where the else (or elif) clause is often used,
the optional else clause of the for loop is rarely used. The statements
following the else statement are executed when the complete sequence of
iterations defined by the for loop is completed. If a break statement (Sec-
tion 6.8) is encountered inside the for loop, however, these statements are
not carried out, and control goes to the next executable statement after the
body of the for/else loop.

If the elements of the sequence being iterated over contain tuples or lists of
a common size, you can replace var with a comma separated list representing
the unpacking of each individual element of sequence. While this doesn’t

6.5. FOR LOOPS 77

really provide any new capabilities to the for loop, it does add a certain
amount of convenience when processing sequences of this sort.

Suppose we have a sequence of tuples containing the last name and first
names of people, and we wish to print the first names followed by the last
names. Since the for loop lets us iterate over the elements of a sequence, and,
in this case, the sequence consists of tuples of length two, we could access
the names as follows:

>>> names = [(’Smith’,’John’),(’Jones’,’Fred’),(’Williams’,’Sue’)]

>>> for i in names:

... print ’%s %s’ % (i[1],i[0])

...

John Smith

Fred Jones

Sue Williams

By using the tuple unpacking feature of the for loop, we can express the
same idea in an easier to understand form:

>>> for last,first in names:

... print ’%s %s’ % (first,last)

...

John Smith

Fred Jones

Sue Williams

As an example of iterating over a non-sequence, consider the file object
introduced in Section 5.4. Once you’ve created a file object suitable for
reading, iterating over the object will advance to the next line in the file. So
to find the longest line in a file, you could use a for loop like the following:

try:

f = open(’some.file’,’r’)

except IOError:

print >>sys.stderr, "Couldn’t open %s" % ’some.file’

sys.exit(1)

maxlen = 0

for line in f:

l = len(line)

78 CHAPTER 6. PROGRAMMING

if l > maxlen:

maxlen = l

print ’Maximum length = %d’ % maxlen

6.6 for loops and the range function

The for loop is very handy for processing a sequence of values, but there
are several very common problems which the for loop can’t handle by itself.
First, changing the value of the for loop variable (var) does not change the
value of the corresponding element in sequence. For example, suppose we
tried to change the value of each element in an array to zero by using the
for loop variable on the left-hand side of an assignment statement:

>>> x = [1,2,3,4,5]

>>> for i in x:

... i = 0

...

>>> x

[1, 2, 3, 4, 5]

The value of the elements in x was not changed, because the for loop vari-
able represents only a copy of the value of the corresponding element in the
sequence, not the actual element itself. Notice that if the elements of the se-
quence being iterated over are mutable objects, then elements stored within
those objects can be changed by refering to the appropriate element of the
loop variable. Consider the following array, whose elements are each another
array. We could replace the first element of each of the array elements with
zero using a for loop:

>>> dblarray = [[7,12,9],[13,8,3],[19,2,14]]

>>> for d in dblarray:

... d[0] = 0

...

>>> dblarray

[[0, 12, 9], [0, 8, 3], [0, 2, 14]]

Another example is the case of creating a new sequence by processing
one or more other sequences. Suppose we have an array of prices and an

6.6. FOR LOOPS AND THE RANGE FUNCTION 79

array of the same length containing taxes, and we wish to create a third
array which has the total of the prices and the taxes for each of the items
represented in the two arrays. Clearly, the for loop as presented so far
has no means of dealing with this problem. If you’re familiar with other
programming languages, you’ll notice that these two tasks are quite simple
in most other languages, at the cost of either a complex syntax or additional
looping constructs.

In python, problems like this are solved by iterating over a sequence of
integers created by the range function, and then refering to the individual
elements of the sequence inside the body of the for loop to perform the
desired tasks. The range function accepts one, two or three arguments. With
a single integer argument, range returns a sequence of integers from 0 to one
less than the argument provided. With two arguments, the first argument
is used as a starting value instead of 0, and with three arguments, the third
argument is used as an increment instead of the implicit default of 1. Notice
that range never includes its upper limit in the returned sequence; like slices
(Section 2.4.3), it is designed to work in conjunction with the subscripting
of elements in a sequence, which start at 0 and continue to one less than the
length of the sequence.

So to zero out all the elements in an array, we could use the range as
follows:

>>> x = [1,2,3,4,5]

>>> for i in range(len(x)):

... x[i] = 0

...

>>> x

[0, 0, 0, 0, 0]

Since the len function returns the number of elements in a sequence, and
since subscripts start with 0, range and len work very well together. Here’s
one solution to the problem of adding together an array of prices and taxes
to create a total array:

>>> prices = [12.00,14.00,17.00]

>>> taxes = [0.48,0.56,0.68]

>>> total = []

>>> for i in range(len(prices)):

... total.append(prices[i] + taxes[i])

80 CHAPTER 6. PROGRAMMING

...

>>> total

[12.48, 14.56, 17.68]

Alternatively, we could refer to the elements of total with the same sub-
scripts as the corresponding elements of prices and taxes, but we would
first have to initialize total to have the correct number of elements:

>>> total = len(prices) * [0]

>>> for i in range(len(prices)):

... total[i] = prices[i] + taxes[i]

...

>>> total

[12.48, 14.56, 17.68]

The brackets around the 0 are required so that python will create a list with
the appropriate number of elements, rather than a scalar (Section 4.3.2).

The range function actually produces a list in memory containing all the
elements specified through its arguments. For sequences involving very large
numbers, this may consume large amounts of memory. In cases like this,
python provides the xrange function. While this function returns an object
that behaves just like the list returned by range, the appropriate elements
are calculated as needed, rather than actually stored in memory. Since this
makes xrange considerably slower than range, you should only resort to
xrange when working with a large range of values.

6.7 while loops

While the for loop provides an excellent way to process the elements of a
sequence, there are times when it’s necessary to do some repetitive compu-
tation which is not based on an array. In those cases, the while loop can be
used. The basic syntax of the while loop is as follows:

while expression:

statements

else:

statements

6.7. WHILE LOOPS 81

When python encounters a while loop, it firsts tests the expression provided;
if it is not true, and an else clause is present, the statements following the
else are executed. With no else clause, if the expression is not true, then
control transfers to the first statement after the while loop.

If the expression is true, then the statements following the while state-
ment are executed; when they are completed, the expression is tested once
again, and the process is repeated. As long as the expression is true, execu-
tion of the statements after the while while be repeated; if the expression is
not true, the statements after the else, if present, are executed. It should be
noted that, as with the for loop, the else clause is not used very often with
while loops, although there are situations where it can be used effectively.

To illustrate the while loop, consider an iterative process to calculate
the cube root of a number. It’s not necessary to understand the underlying
math (based on Newton’s method); it suffices to understand that, starting
from an initial guess, we can calculate a new, better guess through a simple
computation. But instead of repeating the process a fixed number of times
(which could easily be accommodated by a for loop), we want to continue
refining our guess until our answer is reasonably close to the correct one.
In the case of calculating the cube root, a convenient criteria is that the
absolute difference between the number we’re working with and our guess
cubed is small, say 1.e-8. The following python program uses a while loop
to iteratively perform the calculation:

>>> num = 7.

>>> oldguess = 0.

>>> guess = 3.

>>> while abs(num - guess**3) > 1.e-8:

... oldguess = guess

... guess = oldguess - (oldguess**3 - num) / (3 * oldguess**2)

...

>>> guess

1.91293118277

>>> guess**3

7.0

Notice that the variables num, guess, and oldguess were all assigned
values with decimal points included, to insure that calculations done with
them would use floating point arithmetic as opposed to integer arithmetic
(Section 3.1).

82 CHAPTER 6. PROGRAMMING

A common practice in many languages is to assign a value to a variable
by calling a function which returns a non-zero value when it is successful, and
a value of zero when it fails. This assignment is then used as the expression
of a while loop. In python, this practice is not permitted, for a number
of reasons. First, most python functions communicate failure by throwing
an exception, not by returning a zero or None value. Furthermore, since
an assignment (=) can so easily be mistaken for a test for equality (==) or
vice versa, this practice often leads to very difficult-to-track bugs in your
programs. For this reason, programming of while loops is often different in
python than in other languages. In particular, since assignments can’t be
used as expressions in while loops, many python programmers write while

loops as so-called “infinite” loops, and determine when to stop executing the
loop through programming statements inside the loop using the techniques
described in the next section.

6.8 Control in Loops: break and continue

In order to decide when to stop executing a while loop from within the body
of the loop, instead of the expression provided with the while statement,
python provides the break statement. When you issue a break statement
inside a loop (for or while), control is immediately transfered to the first
statement after the body of the loop, including any elif or else clauses
which are attached. Thus, the else clause of a while statement is executed
only after the expression of the while loop is tested and found to be false.
The statements following the else are not executed if control is transfered
from the while clause through a break statement.

Before the introduction of iterators in version 2.0, a common use of the
break statement was to reading data from a file line by line. This technique
is still useful if a file-like object does not support iteration.

try:

f = open(’filename’,’r’)

except IOError,msg:

print ’Error opening filename: %s’ % (msg[1])

sys.exit(1)

while 1:

6.8. CONTROL IN LOOPS: BREAK AND CONTINUE 83

line = f.readline()

if not line : break

continue processing input line

Since assignments aren’t allowed as while loop expressions, the value of 1,
which is always guaranteed to be true, is used as the expression of the while
loop; thus it is essential that a break statement is used somewhere in the
body of the loop to insure that execution will eventually terminate. Here, we
terminate execution of the loop when the readline method returns a value
of None, signaling that it has reached the end of the file. Obviously, in loops
of this sort, an else clause would never make sense, since the loop will never
exit due to the while loop’s expression taking on a false value.

The continue statement can be used in either for or while loops to
instruct python to continue on to the next iteration of the loop without
executing the statements in the loop which follow the continue statement.
In a for loop, the value of the loop variable is incremented after a continue

statement, so that after skipping the remaining part of the loop for the
current iteration, the next iteration will be performed in the normal fashion.

Often a continue statement can be used as an alternative to an if state-
ment inside a loop, and it’s just a matter of personal preference as to which
one is used. For example, suppose we wish to find the largest number in
an array, as well as the index within the array at which the largest value
occured. Using a continue statement, we could use the following:

>>> x = [7, 12, 92, 19, 18 ,44, 31]

>>> xmax = x[0]

>>> imax = 0

>>> for i in range(1,len(x)):

... if x[i] <= xmax : continue

... xmax = x[i]

... imax = i

...

>>> print ’Maximum value was %d at position %d.’ % (xmax,imax)

Maximum value was 92 at position 2.

Similar results could be obtained by putting the last two statements of the
for loop as the clause of an if statement to be carried out when a new
maximum value is found:

84 CHAPTER 6. PROGRAMMING

>>> for i in range(1,len(x)):

... if x[i] > xmax:

... xmax = x[i]

... imax = i

...

>>> print ’Maximum value was %d at position %d.’ % (xmax,imax)

Maximum value was 92 at position 2.

6.9 List Comprehensions

When you’re using a for loop to process each element of a list, you can
sometimes use a construction known as a list comprehension, which was
introduced into version 2.0 of python, to simplify the task. The basic format
of a list comprehension is

[expression for var-1 in seq-1 if condition-1 for var-2 in seq-2 if condition-2 ...]

and the returned value is a list containing expression evaluated at each
combination of var-1, var-2,. . . which meets the if conditions, if any are
present. The second and subsequent for’s, and all of the if’s are optional.
For example, suppose we wanted to create a list containing the squared values
of the elements in some other list. We could use a for loop in the following
way:

>>> oldlist = [7,9,3,4,1,12]

>>> newlist = []

>>> for i in oldlist:

... newlist.append(i*i)

...

>>> newlist

[49, 81, 9, 16, 1, 144]

Using a list comprehension, we can express this more succinctly:

>>> newlist = [i * i for i in oldlist]

By using if clauses within the list comprehension, we can be more selective
about the elements we return:

6.9. LIST COMPREHENSIONS 85

>>> [i * i for i in oldlist if i % 2 == 1]

[49, 81, 9, 1]

When you have more than one for clause, all possible combinations of the
variables in the for clauses will be evaluated:

>>> [(x,y) for x in range(3) for y in range(4)]

[(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 0), (2, 1), (2, 2), (2, 3)]

if clauses can be added after either of the for clauses; to refer to combina-
tions involving all the variables, use an if clause at the very end:

>>> [(x,y) for x in range(3) if x in (1,2) for y in range(4) if y == 0]

[(1, 0), (2, 0)]

>>> [(x,y) for x in range(3) for y in range(4) if x + y < 3]

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)]

86 CHAPTER 6. PROGRAMMING

Chapter 7

Functions

7.1 Introduction

Functions are an important part of any programming language for two rea-
sons. First, they allow you to reuse code you’ve written, without the need
to copy and modify the code each time you use it. For example, if you are
working with a data base, you’ll always need to make a connection to the
data base, and inform it of the table you want to access. By writing a func-
tion to do this, you can dispose of the task with a single line of code in every
program that needs to access the data base. An added advantage to using
a function for a task like this is that if you ever need to change the type of
data base you’re using, or if you detect a flaw in the logic you used when you
first wrote the function, you can simply edit a single version of the function,
and other programs can simply import the corrected version to be instantly
updated.

The second reason to use functions is that it allows you to logically isolate
the different sub-tasks which invariably emerge when you’re working on a
program. In the database example, you’d generally need to connect to the
database, and then either query the database or make some changes. By
writing one function to connect, a second to query and a third to update,
you can write the main part of your program very concisely, and study its
logic without having to get into the details of the database itself. Debugging
such a program becomes much simpler because, once a set of functions has
been developed and tested, it’s not hard to figure out whether a problem is
arising from one of the functions, or from the code that’s calling it. This

87

88 CHAPTER 7. FUNCTIONS

style of programming is known as modular programming, and is generally
recognized as a useful way to make writing easy-to-read and maintainable
programs.

In Python, functions are just one more type of object. Thus you can
assign a function to another name, store them in lists or tuples, pass them
to other functions, and so on. But they have one special property which sets
them apart from most other Python objects: when you provide them with
a list of arguments surrounded by parentheses, they can perform some task,
using the arguments as a guide as to what they should do, and, optionally
they can return a value, which can be used like any other value of the same
type.

We’ve already seen a number of functions in previous chapters, such as
len (Section 2.4.4), which returns the length of a sequence such as a string or
a list, and min and max (Section 4.4), which return the minimum or maximum
value contained in a sequence. We’ve also encountered many methods, which
are very similar to functions, and defined in basically the same way.

In this chapter we’ll examine some of the issues surrounding functions
and how to create functions and import them into your programs.

7.2 Scoping: How Python finds your vari-

ables

When you write a program in Python, you can generally refer to variables
anywhere in the program and Python will find the appropriate values. But
when you create a function, it could potentially be dangerous for Python to
treat the variables within a function as equivalent to the ones which were
used outside the function. Consider this simple example of a function, which
adds all the values in a list:

def addem(list):

sum = 0.

for i in list:

sum = sum + i

return sum

If Python didn’t provide some mechanism for “private” variables within func-
tions, every time you called the addem function, the variable i would get over-
written by the last value in the list being processed by the function. When

7.2. SCOPING: HOW PYTHON FINDS YOUR VARIABLES 89

you define a function, Python creates a separate namespace within that func-
tion A namespace is a mapping between object names in your program and
the location in memory where Python actually stores their values. So when
you create a variable inside a function, Python understands that you mean
the local variable in the function’s name space, and not a variable of the same
name defined somewhere else. Thus, in the addem function, the variables i

and sum would always be resolved as variables local to the function, not as
variables which also exist somewhere else in your program.

To make your programming life easier, if you refer to a variable inside a
function which already exists in your program at the time the function was
called, Python will understand what you are talking about, even though that
variable is not in the functions’ local namespace. Consider this program:

scale = 10.

def doscale(list):

newlist = []

for i in list:

newlist.append(i / scale)

return newlist

mylist = [1,2,3,4,5]

otherlist = doscale(mylist)

print otherlist # result is [0.1, 0.2, 0.3, 0.4, 0.5]

Since scale was set to the value of 10. before the function was called, when
you refer to scale inside of the function, it finds its value correctly. If you
had set scale to a value inside the function, on the other hand, Python would
have created a new variable called scale within the function’s namespace and
used that value, ignoring the original value of the variable. Furthermore, if
scale was not defined inside the function, any attempt to change scale’s
value inside the function would result in an error.

You can override this behavior by using the global statement. When a
variable is declared as being global inside a function, Python will always look
in the global namespace, i.e. the namespace of already defined objects, to
find the value of the variable; if you change the variable inside the function,
the value of the original variable is changed when the function is called. In
general, you should only use global variables when there’s no other (reason-
able) way to solve a problem. If you find that you need to rely on global

90 CHAPTER 7. FUNCTIONS

variables to get a job done, or that you’re refering to lots of variables in
your function which were not passed as arguments you should consider the
object-oriented programming techniques introduced in Chapter 10.

As an example of a global variable, suppose we wish to count how many
times a function is called inside of a program. If we try to keep track of
this information with an ordinary variable inside a function, we won’t be
able to remember the variable’s value between function calls. Thus, a global
variable, initialized to 0 at the beginning of the program, is a logical way to
solve the problem.

count = 0

def doit(x):

global count

count = count + 1

return x + 1

tst = [10,19,25,18,17,23,29]

for i in range(len(tst)):

if tst[i] % 2 == 1:

tst[i] = doit(tst[i])

print ’doit was called %d times.’ % count

If this program were run, it would report that the function was called 5 times,
since there are 5 odd numbers in the vector tst. If the global statement were
not included, the program would have failed with a NameError exception,
since count had not been set to a value inside a function.

Thus, when Python is trying to figure out what a name in your program
refers to, names in a functions’ local namespace take priority over all others,
followed by names of global objects, or objects which were imported into the
global namespace from a module (See Section 1.4.4). Finally, the names of
the builtin objects are searched to resolve the issue. Because of this order,
Python’s scoping is sometimes said to follow the LGB rule.

One important exception to this rule, introduced in Python 2.2, involves
functions which are defined within another function. Consider this simple
function, designed to append a symbol to the beginning of every string in a
list:

7.2. SCOPING: HOW PYTHON FINDS YOUR VARIABLES 91

def addsym(sym,strings):

def doadd(strs):

new = []

for i in strs:

new.append(sym + i)

return new

return doadd(strings)

When Python tries to resolve the name sym inside the function environment
created by the definition of doadd using only the LGB rule, it will not be
able to find a suitable value. If the definition of doadd were not in a function,
Python could find the value of sym in the global namespace; it’s the nesting of
the function definition inside of another function which creates the difficulty.
Thus, in nested environments such as this, if the LGB rule does not resolve
a particular name, the local namespace of the function in which the nested
function was defined is examined to resolve the name.

This use of nested scopes makes it easy to construct closures in Python.
A closure is basically a function which will always be evaluated using the
namespace in which is was created, regardless of the evironment from which
it was called. As a simple example, suppose we wanted to append a number
to the end of a string. We could write a function to generate a function to
append a particular number on a string as follows:

def genfun(num):

def f(str):

return str + ‘num‘

return f

Notice that genfun returns a function as its value; each time we call the
function, it creates a new function to append a particular number to the end
of a string. For example,

>>> one = genfun(1)

>>> two = genfun(2)

>>> three = genfun(3)

>>> str = ’name’

>>> print one(str),two(str),three(str)

name1 name2 name3

92 CHAPTER 7. FUNCTIONS

Regardless of the value of num in the calling environment, the functions
produced by genfun will append the value of num which was passed to getnum
when it was called to produce the function.

7.3 Function Basics

The def statement is the signal to Python that you’re about to define a
function. You follow the keyword def with the name of the function you’re
defining, and a parenthesized list of the arguments which are to be passed
to a function. If your function does not accept any arguments, then simply
use an empty set of parentheses. A colon (:) follows the parenthesized list.
The remainder of the function needs to be indented similarly to the body
of a loop (Section 6.2). If the very next line of your function definition is a
quoted string, it’s stored along with your function to provide documentation
about the function; such a string is called a docstring. The function body
follows the def line and the optional docstring. The function will return
control to the calling environment when it encounters a return statement,
or when it reaches the end of the indented function body, whichever comes
first. If an expression appears after the return statement and on the same
line, the value of that expression is returned through a call to the function.
If no expression appears on the same line as the return statement, or the
function does not contain a return statement, a call to such a function will
return the value of None.

You can access the docstring of a function by refering to the __doc__

attribute, or by passing the name of the function to the help function when
running python interactively. In addition, some python-aware editors will
display the docstring as a tool tip when you move your cursor over the
function’s name in your program.

Here’s a illustration of a function; the function merge combines two lists,
adding items from the second list only if they do not appear in the first.

def merge(list1,list2):

’’’merge(list1,list2) returns a list consisting of the original list1

along with any elements of list2 which were not already in list 1’’’

newlist = list1[:]

for i in list2:

if i not in newlist:

newlist.append(i)

7.4. NAMED ARGUMENTS AND DEFAULT VALUES 93

return newlist

Notice that, inside the function, newlist was created from list1 using the
techniques discussed in Section 6.1, so that the first list passed to merge

would not be modified by the function. The return statement is required,
since the goal of the function is to provide a new list which combines the
elements of the two lists passed to the function.

To call a function, you refer to its name with a parenthesized list of
arguments; if the function takes no arguments, you follow the function name
with a set of empty parentheses, so that Python won’t confuse the function
call with a reference to an ordinary variable. Arguments to functions behave
much the way that assignments do (See Section 6.1): modifying a scalar
or immutable object which has been passed through the argument list of a
function will not modify the object itself, but modifying the elements of a
mutable object (like a list or dictionary) passed to a function will actually
change those elements in the calling environment. The following program
shows how the merge function could be called. For now, we’ll assume that
the definition of merge was typed in interactively before the example, or, if
the program was in a file, the function definition appeared earlier in the same
file as the example. Later we’ll see how you can use the import statement to
access function definitions from other files, without repeatedly entering the
function definition.

>>> one = [7,12,19,44,32]

>>> two = [8,12,19,31,44,66]

>>> print merge(one,two)

[7, 12, 19, 44, 32, 8, 31, 66]

>>> print one

[7, 12, 19, 44, 32]

7.4 Named Arguments and Default Values

As shown in the previous example, each argument to a function has a name,
but, when the function is called the arguments do not necessarily have to
be associated with those names. When arguments are passed to a function
without a name, Python assumes that you’ve entered the arguments in ex-

94 CHAPTER 7. FUNCTIONS

actly the order that they’ve been defined. To illustrate, consider a function
that counts the number of times a particular letter appears in a string:

def count_letter(string,letter):

count = 0

for i in string:

if i == letter:

count = count + 1

return count

If we accidentally passed the letter first, followed by the string, the function
would simply return a zero, unless the letter and the string were identical.
To reduce the necessity to know the order of arguments in a function, Python
allows named arguments. When you call a function, you can precede some or
all of the arguments by a name and an equal sign, to let the function know
exactly which argument you are passing to the function. So if we invoke the
count_letter function as

num = count_letter(letter=’a’,string=’dead parrot’)

we will get the correct answer (2) even though the arguments are in a different
order than they were defined.

To provide even greater flexibility, when you define a function Python
allows you to specify a default value for any or all of the arguments to that
function; the user then need only supply those arguments for which there are
no defaults, and specifying the arguments with defaults in the function defi-
nition becomes optional. To supply a default value when defining a function,
you use a syntax similar to the way you use named arguments when call-
ing a function, namely following the argument name with an equal sign and
the desired default value. Using the count letter function as an example,
suppose we wish, by default, to count the number of blanks in a string. We
would redefine the function as follows:

def count_letter(string,letter=’ ’):

count = 0

for i in string:

if i == letter:

count = count + 1

return count

7.4. NAMED ARGUMENTS AND DEFAULT VALUES 95

The specification of letter=’ ’ tells Python that when the count letter

function is called, and no value is given for the letter argument, to use a
blank as the value for letter. Keep in mind that if a value is given for
letter, either as a named argument or by calling the function with two
arguments, this default will be overridden. Thus all the following calls to the
function will count the number of blanks in the specified string:

mystring = ’this parrot is dead’

count_letter(mystring,’ ’)

count_letter(mystring)

count_letter(letter=’ ’,string=mystring)

When you mix named and unnamed arguments in a function call, the
unnamed arguments must come before the named ones in the argument list.
Thus, when writing a function, you should put required arguments to the
function in the argument list before the ones that you consider optional.

Suppose we wish to extend the count letter program by providing it
with an additional argument representing a character to which the letter
we’re searching for should be changed. Since strings are immutable, we can’t
change the string directly; we need to convert it to a list, and then reconstruct
the string from the list elements. We’ll call the function change letter, and
make its default behavior changing blanks to empty strings, i.e. removing
blanks from a string:

def change_letter(string,frm=’ ’,to=’’):

newstring = ’’

for i in string:

if i == frm:

newstring = newstring + to

else:

newstring = newstring + i

return newstring

Note that we could not use the name “from” as an argument to the function,
since it is a reserved word in Python. Having written the function, we could,
for example, change blanks to plus signs with the following call:

>>> change_letter(’string with blanks’,to=’+’)

’string+with+blanks’

96 CHAPTER 7. FUNCTIONS

However, trying to call the function with a named argument before the un-
named argument will result in an error:

>>> change_letter(frm=’b’,’string with blanks’)

SyntaxError: non-keyword arg after keyword arg

If we wanted to put the named argument first, we’d need to supply a name
for all the arguments which follow it:

>>> change_letter(frm=’b’,string=’string with blanks’)

’string with lanks’

>>>

7.5 Variable Number of Arguments

Sometimes when you write a function, it’s not possible to know ahead of time
how many arguments you will be providing to the function. Suppose we wish
to write a function which will examine an arbitrary number of strings, and
return the length of the longest string. (An alternative would be to write a
function which accepts a list of values instead of individual arguments, but
we’ll continue this approach to illustrate the idea of a function with an arbi-
trary number of arguments.) By providing a function argument whose name
begins with an asterisk, Python will collect any unnamed arguments passed
to the function in a tuple, which can be accessed by the argument’s name. To
write a function which returns the length of the longest of a variable number
of arguments, we can use this feature by including an argument whose name
begins with an asterisk (in this case, we’ll use the name *strings), which
will become a tuple containing all the arguments passed to the function:

def longlen(*strings):

max = 0

for s in strings:

if len(s) > max:

max = len(s)

return max

Notice that inside the function, strings is just an ordinary tuple; the asterisk
before its name is only needed when the function is defined. If we call the

7.5. VARIABLE NUMBER OF ARGUMENTS 97

function with a collection of strings as arguments, it will check them all, and
return the maximum length of any of them:

>>> longlen(’apple’,’banana’,’cantaloupe’,’cherry’)

10

A similar technique can be used to create functions which can deal with an
unlimited number of keyword/argument pairs. If an argument to a function
is preceded by two asterisks, then inside the function, Python will collect all
keyword/argument pairs which were not explicitly declared as arguments into
a dictionary. When such an argument is used, it must be the last argument
in the definition of the function. In this way, you can write a function to
accept any named parameter, even if its name is not known when you are
writing the function.

To illustrate, consider a trivial function which simply gathers all the key-
word/value pairs which were not explicitly declared in the function definition
into a dictionary called dict, and then prints the value of each declared argu-
ment. Two named arguments are provided before the final argument to show
how Python deals with named arguments in the presence of an argument with
two asterisks.

def printargs(a,b,**dict):

print ’a=%s’ % a

print ’b=%s

for k in dict.keys():

print ’%s=%s’ % (k,dict[k])

We can test the function as follows:

>>> printargs(x=’seven’,a=’six’,b=’five’,next=’four’,last=’three’)

a=six

b=five

next=four

x=seven

last=three

Notice that arguments a and b were not placed in the dictionary, since they
were explicitly specified as part of the function definition.

In more complex situations, both kinds of special arguments (single and
double asterisks) can be used in the same function. Once again, a trivial
program will illustrate how this works:

98 CHAPTER 7. FUNCTIONS

def allargs(one,*args,**dict):

print ’one=%s’ % str(one)

print ’Unnamed arguments:’

for a in args:

print ’%s’ % str(a)

print ’Named arguments:’

for k in dict.keys():

print ’%s: %s’ % (k,str(dict[k]))

Since there is one named argument, allargs must be called with at least
one argument, and the first argument will always be interpreted as the value
of one. Here is the result when we call the function with more than one
argument:

>>> allargs(12,’dog’,’cat’,a=10,name=’fred’)

one=12

Unnamed arguments:

dog

cat

Named arguments:

name: fred

a: 10

7.6 Functional Programming, and anonymous

functions

When you have a list of objects, and need to perform the same task on each
of the objects, an alternative to using a for loop is to use the map function.
This function accepts a function as its first argument, and one or more lists as
additional arguments. The number of lists which are provided as additional
arguments must be equal to the number of arguments which the function
being mapped requires.

To illustrate, suppose we have a list of first names and a second list of
last names, and we wish to produce a list each of whose elements is a first
name joined with its corresponding last name. Using the join function of
the string module, we could do this with a for loop

>>> first = [’Joe’,’Sue’,’Harry’]

7.6. FUNCTIONAL PROGRAMMING, AND ANONYMOUS FUNCTIONS99

>>> last = [’Smith’,’Williams’,’Brown’]

>>> both = []

>>> for i in range(0,len(first)):

... both.append(string.join([first[i],last[i]],’ ’))

...

>>> both

[’Joe Smith’, ’Sue Williams’, ’Harry Brown’]

But by defining a function to combine the two pieces, we could achieve
the same goal more simply using map:

>>> def joinname(first,last):

... return string.join([first,last],’ ’)

...

>>> map(joinname,first,last)

[’Joe Smith’, ’Sue Williams’, ’Harry Brown’]

Notice that the names first and last have different meanings inside and
outside the function.

In situations like this, when we are creating a function which will be
used only once, Python provides the lambda operator to produce what are
known as anonymous functions. Anonymous functions are limited to a single
statement which becomes the value returned by the lambda operator. Instead
of listing the arguments to the lambda operator in parentheses, you just follow
the word lambda with a comma separated list of arguments. Our previous
example could then be simplified to:

>>> map(lambda first,last:string.join([first,last],’ ’),first,last)

[’Joe Smith’, ’Sue Williams’, ’Harry Brown’]

When the first argument to map is the special Python object None, map
simply returns whatever arguments it is passed. This provides a simple way
to turn two lists into a single list consisting of (tuple) pairs of corresponding
elements. Thus if we use None as the first argument to map in the previous
example, we get a list containing pairs of first and last names:

>>> map(None,first,last)

[(’Joe’, ’Smith’), (’Sue’, ’Williams’), (’Harry’, ’Brown’)]

100 CHAPTER 7. FUNCTIONS

Another functional programming tool provided by Python is the filter

function. Like, map, the first argument to filter is a function, and the
second argument is a list, but filter returns a new list containing only those
elements of the list for which the function returns a value of true. For ex-
ample, to eliminate negative numbers from a list, we could use filter as
follows:

>>> nums = [-3,7,12,-2,19,-5,7,8,-3]

>>> filter(lambda x:x > 0,nums)

[7, 12, 19, 7, 8]

You may recall the list comprehension (See Section 6.9) as an alternative
way to evaluate an expression for all of the elements of a list. In fact, with a
single for clause, a list comprehension is much like a similar call to map; by
adding an if clause to the comprehension, it becomes much like embedding
a call to filter inside a call to map, as this example shows:

>>> nums = [-4,7,8,3,-2,9]

>>> map(lambda x:x + 10,filter(lambda x:x > 0,nums))

[17, 18, 13, 19]

>>> [x + 10 for x in nums if x > 0]

[17, 18, 13, 19]

Some programmers prefer the list comprehension over map and filter be-
cause it eliminates the need for lambda functions.

When there is more than one for loop, corresponding to additional ar-
guments in map, map requires a function which will take as many arguments
as there are lists being processed, each of the same length, while the list
comprehension simply evaluates its expression for every combination of val-
ues expressed by the for loops. Notice the difference between these two
statements:

>>> map(lambda x,y:(x,y),[’a’,’b’,’c’],[’1’,’2’,’3’])

[(’a’, ’1’), (’b’, ’2’), (’c’, ’3’)]

>>> [(x,y) for x in [’a’,’b’,’c’] for y in [’1’,’2’,’3’]]

[(’a’, ’1’), (’a’, ’2’), (’a’, ’3’), (’b’, ’1’), (’b’, ’2’),

(’b’, ’3’), (’c’, ’1’), (’c’, ’2’), (’c’, ’3’)]

In the previous example, the lengths of the two arguments passed to map for
processing must be of the same size, but there is no similar restriction for
the list comprehension.

7.6. FUNCTIONAL PROGRAMMING, AND ANONYMOUS FUNCTIONS101

Finally, the function reduce takes as its first argument a function with
exactly two arguments, and as its second argument a list . It successively
applies the function to the elements of the list, using the current result of the
application as the first argument to the function, and one of the elements of
the list as the second argument, and returns a scalar value. An optional third
argument provides a starting value, which otherwise defaults to 0. Thus to
take the sum of a list of numbers we could use the following:

>>> reduce(lambda x,y:x + y,nums)

40

102 CHAPTER 7. FUNCTIONS

Chapter 8

Using Modules

8.1 Introduction

The core Python language is, by design, very small, making the language
easy to learn and efficient in its operation. However, there are additional
capabilities that are required in order to complete many programming tasks,
and these capabilities are provided through the use of modules. Modules
are simply collections of Python programs (often with accompanying pro-
grams written in the C programming language) and other objects, which are
grouped together according to functionality. In this chapter, we’ll look at
how to access modules in your Python programs, as well as take a quick
overview at some of the most commonly used modules which are distributed
with Python. Two cautions are in order. First, due to the large number of
available modules, and the depth of coverage within many of these modules,
it will not be possible to take an in-depth look at the functionality offered
by the modules. The online reference guide should be consulted to get more
information about any of the modules mentioned here. Secondly, in addition
to the standard modules distributed with Python, keep in mind that there
are many additional modules listed on the python web site. If there’s a pro-
gramming task that you’d like to accomplish with Python, make sure you
check the Python web site to see if there is a module available to help you
with your task.

103

104 CHAPTER 8. USING MODULES

8.2 Namespaces

As discussed in Chapter 7, when you type the name of a variable or function
into the Python interpreter, Python discovers what it is by resolving its name
in a namespace. Recall that a namespace is a mapping between the names
by which you refer to objects in your program, and the location of the object
as it’s actually stored in the computer. When you write a python program,
and refer to a variable called x, that variable is said to be part of the local
namespace.

In order to use a module, you must expand the namespace of your program
to include the objects which are defined in the module, and there are three
ways in which you can do this, each using the import statement. To make
these ideas more concrete, let’s consider the urllib module, which provides
functions for accessing documents on the World Wide Web through their
URLs (Universal Resource Locator). The simplest way to access a module is
to provide the module’s name to the import statement; in our example this
would mean using the statement

import urllib

somewhere near the beginning of our program. When you use this form
of the import statement, the only name which is imported into the local
namespace is the name urllib; in order to access the individual objects
within the urllib module, you need to further qualify the urllib reference
with the name of the object you wish to access, separated by a period (.)
from the name of the module itself. (To find the names of all of the objects
defined in a module, you can use the dir function; to actually see the contents
of the namespace, you can use the vars function.) You can import more than
one module using a single import statement by separating the names of the
modules you wish to import with commas.

As an example, one of the functions in the module is called urlopen; you
supply this function a character value consisting of any URL, and it returns a
file-like object, allowing you to use any of the methods discussed in Chapter 5
to access the content of the URL. After using the import urllib statement,
we could create a file object to access the Yahoo web page with the following
Python command:

yahoo = urllib.urlopen(’http://www.yahoo.com’)

8.2. NAMESPACES 105

One advantage of this method is that it is immediately obvious that the
urlopen function comes from the urllib module. If you wanted to get more
information about the function, it would be clear where you would need to
go to find it.

As an alternative to importing a module name into the local namespace
and having to further qualify that module name to access individual objects
within the module, you can import the names of the objects you need directly
into the local namespace. Following the above example, we could import
urlopen directly into the local namespace with the command

from urllib import urlopen

To import more than one object from a module, provide the names of the
objects you wish to import as a comma separated list. The import statement
above would allow us to refer to urlopen directly:

yahoo = urlopen(’http://www.yahoo.com’)

While this approach is slightly more efficient than importing an entire mod-
ule, it eliminates the explicit connection between the urlopen function and
the urllib module. In addition, you need to list the name of each func-
tion you plan to use on the import statement, instead of being able to use
whichever function you need, provided that you qualify its name with the
name of the module that contains it.

Finally, you can import all of the objects from a module into the local
namespace with a command of the form

from modulename import *

Since this technique may overwrite existing objects (and even built-in ob-
jects), it should be used with great care. Generally, the only time this method
is useful is when the author of a module has taken care in naming the objects
in the module so that they won’t clash with existing objects. In these cases,
the documentation for the module should make it clear that this technique
is appropriate.

Python keeps track of what modules have been imported, and it will not
re-import a module which has already been imported. This feature is essen-
tial to allow imported modules to verify that the modules they need are in
place, without needlessly reprocessing the contents of those modules. When
you are interactively testing a module, this feature can be very frustrating,

106 CHAPTER 8. USING MODULES

because changes you make to your module will not be reflected when you
reissue an import statement. The reload function is provided specifically
for this situation. When you use the reload function, python will always
read the contents of a module, even if it has already been imported. Note
that the reload function only works for entire modules – if you’re importing
specific objects from a module, you’ll need to restart your python session in
order to see the changes that you’ve made to the module.

8.3 Functions for working with modules

While not very useful in creating working applications, python provides you
with a number of functions which are useful for getting information about
the modules (and their corresponding namespaces) that you’re using in your
program. The dir function returns a list containing all of the names defined
within a module. With no arguments, it is equivalent to the locals function;
given a module name, it displays the the names defined in that module.
The globals function does the same thing for names defined in the global
environment. The vars function works similarly, but returns a dictionary
whose keys are the names of the objects defined in a module, and whose
values are the objects themselves.

The help function, mentioned briefly in Section 7.3, can be passed a
module name to get an overview of the use of the module. Recall that this
function is only available when running python interactively.

8.4 The string module

8.4.1 String Constants

Among the constants defined in the string library, some of the most useful
ones are digits, which contains the ten decimal digits, and the three strings
uppercase, lowercase and letters which contain the 26 uppercase letters
of the alphabet, the 26 lowercase letters of the alphabet, and the union of
the uppercase and lowercase letters, respectively. These strings are useful
for verifying that all of the characters in a string are of a particular type.
For example, if we had a character string called code which was supposed to
contain only numbers, we could verify this with a function like the following:

8.4. THE STRING MODULE 107

import string

def checknum(code):

ok = 1

for i in code:

if i not in string.digits:

ok = 0

return ok

8.4.2 Functions in the string module

As mentioned in Section 2.4.4, as of version 2.0, much of the functionality
once provided by the string module is now made available through string
methods. If you are using an older version of python, or if you inherit code
written for an older version of python, you may have to use or understand
the functions described in this section. While these functions will likely be
supported for a while, it’s best to switch to string methods at your earliest
convenience, because the functions in this module will not be supported
forever. Two of the most useful functions in the string module are split

and join. The split function takes a string and returns a list of the words
in the string. By default, a word is defined as a group of non-white space
characters separated by one or more white space characters. An optional
second argument (named sep) provides a character or string of characters
to use as the separator which defines what a word is. Note that, when you
specify a second argument, each occurrence of the character or string defines
a word; in particular multiple occurrences of the separator will generate
multiple empty strings in the output. This can be illustrated by the following
simple example:

>>> import string

>>> str = ’one two three four five’

>>> string.split(str)

[’one’, ’two’, ’three’, ’four’, ’five’]

>>> string.split(str,’ ’)

[’one’, ’two’, ’’, ’’, ’three’, ’four’, ’’, ’’, ’’, ’five’]

In the first (default) case, any number of blanks serves as a separator, whereas
when a blank is provided as the separator character, fields separated by
multiple blanks produce empty strings in the output list.

108 CHAPTER 8. USING MODULES

Finally, an optional third argument (maxsplit) limits the number of
times split will break apart its input string. If more separators are present
in the input string than the maxsplit argument implies, the remainder of
the string is returned as the final element of the list. For example to split a
string into a list with the first word as the first element, and the remainder
of the string as the second element, it suffices to call split with maxsplit

set to 1:

>>> who = ’we are the knights who say ni’

>>> string.split(who)

[’we’, ’are’, ’the’, ’knights’, ’who’, ’say’, ’ni’]

>>> string.split(who,’ ’,1)

[’we’, ’are the knights who say ni’]

The function join provides the opposite functionality of split. It ac-
cepts a sequence of strings, and joins them together, returning a single string.
By default, a blank is inserted between each of the original strings; the op-
tional named argument sep allows you to provide an alternative string to
be used as a separator. As a simple example of the join function, con-
sider producing comma-separated data suitable for input to a spreadsheet
program.

>>> import string

>>> values = [120.45,200.30,150.60,199.95,260.50]

>>> print string.join(map(str,values),’,’)

120.45,200.3,150.6,199.95,260.5

Since the first argument to join must be a sequence of strings, the map

function was used to convert each element of the values list to a string.
Three functions are provided in the string module for removing whites-

pace from strings: lstrip, rstrip and strip which removing leading, trail-
ing and both leading and trailing whitespace from a string, respectively. Each
of the functions accepts a string and returns the stripped string.

A variety of functions dealing with capitalization are contained in the
string module. The capitalize function returns its input string with the
first letter capitalized. The capwords function capitalizes the first letter of
each word in a string, replaces multiple blanks between words with a single
blank, and strips leading and trailing whitespace. The swapcase function
accepts a string and returns a string with the case of each character in the

8.5. THE RE MODULE: REGULAR EXPRESSIONS 109

original string reversed (uppercase becomes lowercase and vice versa). The
upper function returns a string with all the characters of its input string con-
verted to uppercase; the lower function converts all characters to lowercase.

8.5 The re module: Regular Expressions

8.5.1 Introduction to Regular Expressions

Regular expressions are a special way of defining, searching for, and mod-
ifying patterns which appear in text. As a first approximation, you can
think of regular expressions as being literal pieces of text, for example ’cat’
or ’1.00’. At a more complex level, they can be used to describe patterns
such as “a number followed by a capital letter, followed by a character that’s
not a dash”. The re module provides functions for defining regular expres-
sions, as well as searching strings for the presence of regular expressions, and
substituting different text for a regular expression.

While it generally takes some experience to effectively use complex regular
expressions, you can start using simple regular expressions in your Python
programs right away, and learn the complexities over time.

8.5.2 Constructing Regular Expressions

Regular expressions in Python are strings containing three different types of
characters: literal characters, which represent a single character; character
classes, which represent one of several different characters, and modifiers,
which operate on characters or character classes. Literal characters include
digits, upper and lower case letters and the special characters listed in Ta-
ble 2.1. Because many of the usual punctuation characters have a special
meaning when used in regular expressions, when you need to use one of these
characters in a regular expression, you need to precede it with a backslash
(\). These characters are

. ^ $ + ? * () [] { } | \

A character class is represented by one or more characters surrounded by
square brackets ([]). When Python encounters a character class in a regular
expression, it will be matched by an occurrence of any of the characters
within the character class. Ranges of characters (like a-z or 5-9) are allowed

110 CHAPTER 8. USING MODULES

Symbol Matches Symbol Matches

\w Alphanumerics and _ \W Non-alphanumerics
\d Digits \D Non-digits
\s Whitespace \S Non-whitespace

Table 8.1: Escape sequences for character classes

in character classes. (If you need to specify a dash inside a character class,
make sure that it is the first character in the class, so that Python doesn’t
confuse it with a range of characters.) If the first character in a character
class is a caret (^), then the character class is matched by any character
except those listed within the square brackets. As a useful shortcut, Python
provides some escape sequences which represent common character classes
inside of regular expressions. These sequences are summarized in Table 8.1

As mentioned previously, certain punctuation symbols have special mean-
ings inside of regular expressions. The caret (^) indicates the beginning of a
string, while the dollar sign ($) indicates the end of a string. Furthermore,
within a regular expression, parentheses can be used to group together sev-
eral characters or character classes. Finally a number of characters known
as modifiers and listed in Table 8.2 can be used within regular expressions.
Modifiers can follow a character, character class or a parenthesized group
of characters and/or character classes, and expand the range of what will
be matched by the entity which precedes them. For example, the regular
expression ’cat’ would only be matched by a string containing those spe-
cific letters in the order given, while the regular expression ’ca*t’ would be
matched by strings containing sequences such as ct, caat, caaat, and so on.

8.5.3 Compiling Regular Expressions

Before Python can actually test a string to see if it contains a regular expres-
sion, it must internally process the regular expression through a technique
known as compiling. Once a regular expression is compiled, Python can per-
form the comparison very rapidly. For convenience, most of the functions
in the re module will accept an uncompiled regular expression, but keep in
mind that if you are repeatedly performing a regular expression search on a
series of strings, it will be more efficient to compile the regular expression
once, creating a regular expression object, and to invoke the regular expres-

8.5. THE RE MODULE: REGULAR EXPRESSIONS 111

Modifier Meaning

. matches any single character except newline
| separates alternative patterns
* matches 0 or more occurrences of preceding entity
? matches 0 or 1 occurrences of preceding entity
+ matches 1 or more occurrences of preceding entity

{n } matches exactly n occurrences of preceding entity
{n ,} matches at least n occurrences of preceding entity
{n ,m } matches between n and m occurrences

Table 8.2: Modifiers for Regular Expressions

sion function as a method on this object. Suppose we wish to search for email
addresses in a set of strings. As a simple approximation, we’ll assume that
email addresses are of the form user@domain. To create a compiled regular
expression the following statement could be used:

>>> emailpat = re.compile(r’[\w.]+@[\w.]+’)

Note the use of the r modifier to create a raw string – this technique should
usually be used when you are constructing a regular expression. In words, we
can describe this regular expression as “one or more alphanumeric characters
or periods, followed by an at sign (@), followed by one or more alphanumeric
characters or periods. In later sections, we’ll see how to use this compiled
object to search for the regular expression in strings.

Another advantage of compiling a regular expression is that, when you
compile a regular expression, you can specify a number of options modifying
the way that Python will treat the regular expression. Each option is defined
as a constant in the re module in two forms; a long form and a single letter
abbreviation. To specify an option when you compile a regular expression,
pass these constants as a second argument to the compile function. To
specify more than one option, join the options with the bitwise or operator
(|). The available options are summarized in Table 8.3.

8.5.4 Finding Regular Expression Matches

The re module provides three functions to test for the presence of a regular
expression in a string. Each of these functions can be called in two slightly

112 CHAPTER 8. USING MODULES

Short Name Long Name Purpose

I IGNORECASE Non-case-sensitive match
M MULTILINE Make ^ and $ match beginning and end of lines within

the string, not just the beginning and end of the string
S DOTALL allow . to match newline, as well as any other character
X VERBOSE ignore comments and unescaped whitespace

Table 8.3: Options for the compile function

different ways, depending on whether the regular expression has already been
compiled or not.

The function match looks for a regular expression at the beginning of a
string. The function search looks for a regular expression anywhere in a
string. When invoked as methods on a compiled regular expression, each
of these functions accepts two optional arguments, pos and endpos, which
specify the starting and ending positions within the string if you need to
match a regular expression in a substring. Each of these functions returns
a match object, described below if the regular expression is found, and the
special value None if the regular expression is not found.

These functions act as methods for compiled regular expressions, and as
functions when their first argument is a regular expression. For example,
suppose we wish to search for email addresses as defined in Section 8.5.3,
in a series of strings. After importing the re module, we could compile the
regular expression and search a string with the following statements:

>>> emailpat = re.compile(r’[\w.]+@[\w.]+’)

>>> str = ’Contact me at myname@mydomain.com

>>> emailpat.search(str)

<re.MatchObject instance at e95d8>

If we were only going to use the regular expression once, we could call the
search function directly:

>>> re.search(r’[\w.]+@[\w.]+’,str)

<re.MatchObject instance at e7ac8>

The third function for finding regular expressions in a string is findall.
Rather than returning a match object, it returns a list containing the patterns
which actually matched the regular expression. Like the other two functions,

8.5. THE RE MODULE: REGULAR EXPRESSIONS 113

it can be called as a method or a function, depending on whether the regular
expression has already been compiled.

>>> re.findall(r’[\w.]+@[\w.]+’,str)

[’myname@mydomain.com’]

>>> emailpat.findall(str)

[’myname@mydomain.com’]

One very useful feature of findall is that, as its name implies, it will return
multiple occurrences of regular expressions:

>>> newstr = ’My email addresses are myname@mydomain.org and \

... othername@otherdomain.net’

>>> emailpat.findall(newstr)

[’myname@mydomain.org’, ’othername@otherdomain.net’]

While not actually used for matching regular expressions, it should be
mentioned that the re module provides a split function, which can be used
like the split function of the string module (See Section 8.4.2), but which
will split a string based on regular expressions. Like the other functions in the
re module it can be invoked as a method on a compiled regular expression,
or called as a normal function:

>>> plmin = re.compile(’[+-]’)

>>> str = ’who+what-where+when’

>>> plmin.split(str)

[’who’, ’what’, ’where’, ’when’]

>>> re.split(’[+-]’,str)

[’who’, ’what’, ’where’, ’when’]

8.5.5 Tagging in Regular Expressions

In the previous section, our interest was in the entire regular expression (for
an email address), so extracting the entire expression from a string would be
sufficient for our purposes. However, in many cases, the patterns we wish to
find are determined by context, and we will need to extract subsections of the
pattern. Consider the problem of extracting the names of images referenced
in a web page. An example of such a reference is

114 CHAPTER 8. USING MODULES

When constructing a regular expression in situations like this, it’s important
to consider the variations which may exist in practical applications. For
example, the HTML standard allows blanks around its keywords, as well as
upper or lower case,and filenames surrounded by single or double quotes.
Thus, to compile a regular expression which would match constructions like
the one above we could use the following statement:

>>> imgpat = re.compile(r’< *img +src *= *["\’].+["\’]’,re.IGNORECASE)

Note the use of backslashes before the single quotes in the regular expression.
Since single quotes were used to delimit the regular expression, they must
be escaped inside the expression itself. Alternatively, triple quotes could be
used:

>>> imgpat = re.compile(r’’’< *img +src *= *["’].+["’]’’’,re.IGNORECASE)

When we use this regular expression, it will find the required pattern, but
there is no simple provision for extracting just the image name. To make it
easy to access a portion of a matched regular expression, we can surround
a portion of the expression with parentheses, and then use the groups or
group method of the returned matched object to access the piece we need.
Alternatively, the findall method will return all the tagged pieces of a
regular expression.

To extract just the image name from text using the above expression, we
first must include parentheses around the portion of the regular expression
corresponding to the desired image name, then use the search function to
return an appropriate match object, and finally invoke the group method on
the match object, passing it the argument 1 to indicate that we want the
first tagged expression.

>>> imgtext = ’
Here is a picture’

>>> imgpat = re.compile(r’’’< *img +src *= *["’](.+)["’]’’’,re.IGNORECASE)

>>> m = imgpat.search(imgtext)

>>> m.group(1)

’../images/picture.jpg’

If the group method is passed the value 0, it will return the entire text which
matched the regular expression; if it’s passed a list of numbers, it will return a
tuple containing the corresponding tagged expressions. The groups method
for match objects returns all of the tagged expressions in a tuple.

The image name could also be extracted using findall:

8.5. THE RE MODULE: REGULAR EXPRESSIONS 115

>>> imgpat.findall(imgtext)

[’../images/picture.jpg’]

Note that findall returns a list, even when there is only one element.

8.5.6 Using Named Groups for Tagging

When you only have one or two tagged groups in a regular expression, it isn’t
too difficult to refer to them by number. But when you have many tagged
expressions, or you’re aiming to maximize the readability of your programs,
it’s handy to be able to refer to variables by name. To create a named group in
a Python regular expression, instead of using plain parentheses to surround
the group, use parentheses of the form (?P<name>. . .), where name is the
name you wish to associate with the tagged expression, and . . . represents
the tagged expression itself. For example, suppose we have employee records
for name, office number and phone extension which look like these:

Smith 209 x3121

Jones 143 x1134

Williams 225 555-1234

Normally, to tag each element on the line, we’d use regular parentheses:

recpat = re.compile(r’(\w+) (\d+) (x?[0-9-]+)’)

To refer to the three tagged patterns as name, room and phone, we could use
the following expression:

recpat1 = re.compile(r’(?P<name>\w+) (?P<room>\d+) (?P<phone>x?[0-9-]+)’)

First, note that using named groups does not override the default behaviour
of tagging - the findall function and method will still work in the same
way, and you can always refer to the tagged groups by number. However,
when you use the group method on a match object returned by search or
match, you can use the name of the group instead of the number (although
the number will still work):

>>> record = ’Jones 143 x1134’

>>> m = recpat1.search(record)

>>> m.group(’name’)

’Jones’

116 CHAPTER 8. USING MODULES

>>> m.group(’room’)

’143’

>>> m.group(’phone’)

’x1134’

Now suppose we wish to refer to the tagged groups as part of a substi-
tution pattern. Specifically, we wish to change each record to one with just
the room number followed by the name. Using the pattern without named
groups, we could do the following:

>>> recpat.sub(r’\2 \1’,record)

’143 Jones’

With named groups, we can use the syntax \g<name> to refer to the tagged
group in substitution text:

>>> recpat1.sub(’\g<room> \g<name>’,record)

’143 Jones’

To refer to a tagged group within a regular expression, the notation
(?P=name) can be used. Suppose we’re trying to detect duplicate words
appearing next to each other on the same line. Without named groups, we
could do the following:

>>> line = ’we need to to find the repeated words’

>>> re.findall(r’(\w+) \1’,line)

[’to’]

Using named groups we can make the regular expression a little more read-
able:

>>> re.findall(r’(?P<word>\w+) (?P=word)’,line)

[’to’]

Notice when this form for named groups is used, the parentheses do not
create a new grouped pattern.

8.5.7 Greediness of Regular Expressions

Suppose that we try to use the regular expression for image names developed
previously on a string containing more than one image name:

8.5. THE RE MODULE: REGULAR EXPRESSIONS 117

>>> newtext = ’
 ’

>>> imgpat.findall(newtext)

[’/one.jpg">
 <img src = "/two.jpg’]

Instead of the expected result, we have gotten the first image name with
additional text, all the way through the end of the second image name.
The problem is in the behavior of the regular expression modifier plus sign
(+). By default, the use of a plus sign or asterisk in a regular expression
causes Python to match the longest possible string which will still result in
a successful match. Since the tagged expression (.+) literally means one or
more of any character, Python continues to match the text until the final
closing double quote is found.

To prevent this behaviour, you can follow a plus sign or asterisk in a regu-
lar expression with a question mark (?) to inform Python that you want it to
look for the shortest possible match, overriding its default, greedy behavior.
With this modification, our regular expression returns the expected results:

>>> imgpat = re.compile(r’’’< *img +src *= *["’](.+?)["’]’’’,re.IGNORECASE)

>>> imgpat.findall(newtext)

[’/one.jpg’, ’/two.jpg’]

8.5.8 Multiple Matches

We’ve already seen that the findall method can return a list containing
multiple occurrences of a match within a string. There are a few subtleties
in the use of findall which should be mentioned, as well as alternatives
which may be useful in certain situations.

One consideration about findall is that if there are tagged subexpres-
sions within the regular expression, findall returns a list of tuples contain-
ing all of the tagged expressions. For example, consider matching a pattern
consisting of a number followed by a word. To capture the number and word
as separate entities, we can surround their patterns by parentheses:

>>> tstpat = re.compile(r’(\d+) (\w+)’)

>>> tstpat.findall(’17 red 18 blue’)

[(’17’, ’red’), (’18’, ’blue’)]

But what if we include parentheses in the regular expression for purposes of
grouping only? Consider the problem of identifying numeric IP addresses in

118 CHAPTER 8. USING MODULES

a text string. A numeric IP address consists of four sets of numbers separated
by periods. A regular expression to find these addresses could be composed
as follows:

>>> ippat = re.compile(r’\d+(\.\d+){3}’)

Note that since we are looking for a literal period, we need to escape it with
a backslash, to avoid it being interpreted as a special character representing
any single character. If we now use findall to extract multiple IP addresses
from a text line, we may be surprised at the result:

>>> addrtext = ’Python web site: 132.151.1.90 \

... Google web site: 216.239.35.100’

>>> ippat.findall(addrtext)

[’.90’, ’.100’]

The problem is that Python interprets the parentheses as tagging operators,
even though we only wanted them to be used for grouping. To solve this
problem, you can use the special sequence of characters (?: to open the
grouping parentheses. This informs Python that the parentheses are for
grouping only, and it does not tag the parenthesized expression for later
extraction.

>>> ippat = re.compile(r’\d+(?:\.\d+){3}’)

>>> addrtext = ’Python web site: 132.151.1.90 \

... Google web site: 216.239.35.100’

>>> ippat.findall(addrtext)

[’132.151.1.90’, ’216.239.35.100’]

More control over multiple matches within a string can be achieved by
using the match object returned by search or match. This object has, among
other information, two methods called start and end which return the in-
dices in the matched string where the match was found. If these methods are
called with an argument, they return the starting and ending indices of the
corresponding tagged groups; without an argument, they return the indices
for the entire match. Thus, by slicing the original string to remove matches
as they are found, multiple matches can be processed one at a time. Like
so many other features of Python, the choice of using findall or processing
the match object is usually a personal one — you just have to decide in a
given setting which one will be the most useful.

8.5. THE RE MODULE: REGULAR EXPRESSIONS 119

To process the IP addresses in the previous example one at a time, we
could use code like the following

>>> addrtext = ’Python web site: 132.151.1.90 \

... Google web site: 216.239.35.100’

>>> newtext = addrtext

>>> ippat = re.compile(r’\d+(?:\.\d+){3}’)

>>> mtch = ippat.search(newtext)

>>> count = 1

>>> while mtch:

... print ’match %d: %s’ % (count,mtch.group(0))

... count = count + 1

... newtext = newtext[mtch.end(0) + 1:]

... mtch = ippat.search(newtext)

...

match 1: 132.151.1.90

match 2: 216.239.35.100

8.5.9 Substitutions

In addition to finding regular expressions in text, the re module also al-
lows you to modify text based on the presence of regular expressions. In
the simplest case, the sub function of the re module allows for simple text
substitution:

>>> txt = "I love dogs. My dog’s name is Fido"

>>> re.sub(’dog’,’cat’,txt)

"I love cats. My cat’s name is Fido"

Like other functions in the module, sub can be called as a method if a regular
expression has been compiled.

>>> ssnpat = re.compile(’\d\d\d-\d\d-\d\d\d\d’)

>>> txt = ’Jones, Smith Room 419 SSN: 031-24-9918’

>>> ssnpat.sub(’xxx-xx-xxx’,txt)

’Jones, Smith Room 419 SSN: xxx-xx-xxx’

If you need to specify any of the flags in Table 8.5.3 in the regular expression
to be substituted, you must use a compiled regular expression.

120 CHAPTER 8. USING MODULES

The default behaviour of sub is to substitute all occurrences of regular
expressions found; an optional argument named count can be passed to sub

to limit the number of substitutions it performs. If the number of times
a substitution occurs is of interest, the subn method (or function) of the
re module can be used with the same arguments as sub, but it will return
a tuple containing the substituted string and the number of substitutions
which took place.

When the regular expression to be substituted contains tagged patterns,
these patterns can be used as part of the replacement text passed to sub. You
can refer to the tagged patterns by preceding their number with a backslash;
the first tagged pattern can be refered to as \1, the second as \2, and so on.
Thus to reverse the order of pairs words and numbers in a string, we could
use a call to sub like the following:

>>> txt = ’dog 13 cat 9 chicken 12 horse 8’

>>> re.sub(’(\w+) (\d+)’,r’\2 \1’,txt)

’13 dog 9 cat 12 chicken 8 horse’

For more complex substitutions, a function can be passed to sub or subn
in place of a replacement string; each time a substitution is to be performed,
Python passes the appropriate match object to this function, and uses the
return value of the function as the replacement text. Consider the task of
changing decimal numbers to their hexadecimal equivalents in a string of
text. Using Python’s string formatting features, this is easy to do using the
x format qualifier. For example:

>>> x = 12

>>> ’%02x’ % 12

’0c’

To make such a modification as part of a regular expression substitution, we
can write a function to extract the appropriate text from a match object and
return the desired hexadecimal equivalent, and pass this function in place of
a replacement string to the sub method:

>>> txt = ’Group A: 19 23 107 95 Group B: 32 41 213 29’

>>> def tohex(m):

... return ’%02x’ % int(m.group())

...

>>> re.sub(’\d+’,tohex,txt)

’Group A: 13 17 6b 5f Group B: 20 29 d5 1d’

8.6. OPERATING SYSTEM SERVICES: OS AND SHUTIL MODULES 121

For a simple function like this one, it may be more convenient to define
an anonymous function using the lambda operator (Section 7.6):

>>> re.sub(’\d+’,lambda x: ’%02x’ % int(x.group()),txt)

’Group A: 13 17 6b 5f Group B: 20 29 d5 1d’

8.6 Operating System Services: os and shutil

modules

The os module provides a dictionary named environ whose keys are the
names of all the currently defined environmental variables, and whose cor-
responding values are the values of those variables. In addition to accessing
the values of environmental variables, you can change the values of elements
in the environ dictionary to modify the values of environmental variables;
note that these changes will only be in effect for subsequent operating system
commands in your current Python session, and will be discarded once you
exit your Python session.

Since one use of Python is as a replacement for shell scripts, it’s natural
that there should be facilities to perform the sorts of tasks that would usually
be done with a file manager or by typing into a command shell. One basic
function, provided by the os module, is system, which accepts a single string
argument, and executes the string as a command through the operating sys-
tem’s shell. Although it is often tempting to use system for a wide variety
of common tasks, note that each call to system spawns a new command
shell on your computer, so, in many cases, it will be a very inefficient way
to perform a task. In addition, errors in the execution of a command passed
to system will not automatically raise an exception, so if you need to verify
that such a command executed properly, you should check the operating sys-
tem’s return code, which is passed back into the Python environment as the
value returned by system function. (When you invoke an operating system
command through system, its standard input, output and error streams will
go to the same location as the corresponding streams of your Python process.
If you need to capture the output of an operating system command, use the
popen function of the os module (Section 5.6).)

The shutil module provides commands to perform many common file
manipulations without the need for spawning a new process. As always, the
first step in using the functions in this module is to import the module using

122 CHAPTER 8. USING MODULES

Function Name Purpose Arguments

copyfile Makes a copy of a file src - source file
dest - destination file

copy Copies files src - source file
dest - destination file or directory

copytree Copies an entire directory src - source directory
dest - destination directory

rmtree removes an entire directory path - path of directory

Table 8.4: Selected functions in the shutil module

the import statement as discussed in Section 8.2. Some of the functions
contained in the shutil module are summarized in Table 8.4

When you specify a filename which does not begin with a special character
to any of the functions in the os or shutil module, the name is resolved
relative to the current working directory. To retrieve the name of the current
working directory, the getcwd function of the os module can be called with
no arguments; to change the current directory, the chdir function of the os

module can be called with a single string argument providing the name of
the directory to use as the current working directory. In particular, note
that calling the operating system’s cd (Unix) or chdir (Windows) functions
through the system function mentioned above will not work, since the change
will only take place in the shell which is spawned to execute the command,
not in the current process.

The listdir function of the os module accepts a single argument con-
sisting of a directory path, and returns a list containing the names of all files
and directories within that directory (except for the special entries “.” and
“..”.) The names are returned in arbitrary order.

Contained within the os module is the path module, providing a number
of functions for working with filenames and directories. While you can import
os.path directly, the module is automatically imported when you import the
os module; simply precede the names of the functions in the module with
the identifier os.path. Some of the more useful functions in this module are
summarized in Table 8.5; each accepts a single argument.

It should be mentioned that the list of filenames returned by listdir is
not fully qualified; that is only the last portion of the filename is returned.
Most of the other functions in the os modules require a fully-qualified path-

8.6. OPERATING SYSTEM SERVICES: OS AND SHUTIL MODULES 123

Function Name Purpose Returns
abspath Resolve a filename relative to absolute pathname

the current working directory
basename Return the basename of a path basename
dirname Return the directory name of a path directory name
exists Tests for existence of a path 1 if the path exists, 0 otherwise
expanduser Expands “tilda” (~) paths expanded path

(or original path if no tilda)
expandvars Expands shell variables expanded version of input
getsize Return the size of a file size of file in bytes
isfile Tests for regular files 1 if path is a regular file, 0 otherwise
isdir Tests for directories 1 if path is a directory, 0 otherwise
islink Tests for links 1 if path is a link, 0 otherwise

Table 8.5: Functions in the os.path module

name. There are two methods to insure that these filenames will get resolved
correctly. The first involves calling chdir to make the directory of interest
the current working directory; then the filenames returned by listdir will
be correctly resolved since the files will be found in the current directory. The
second approach, illustrated in the following function, involves prepending
the directory name to the filenames returned by listdir.

Consider a function to add up the sizes of all the files in a given directory.
The isdir and islink functions can be used to make sure that directories
and links are not included in the total. One possible implementation of this
function is as follows:

import os

def sumfiles(dir):

files = os.listdir(dir)

sum = 0

for f in files:

fullname = os.path.join(dir,f)

if not os.path.isdir(fullname) and not os.path.islink(fullname):

sum = sum + os.path.getsize(fullname)

return sum

124 CHAPTER 8. USING MODULES

Notice that the join function of the os.path module was used to create
the full pathname - this insures that the appropriate character is used when
combining the directory and filename.

While it may not be as easy to read as the previous function, operations
like the ones carried out by sumfiles are good candidates for the functional
programming techniques described in Section 7.6. Here’s another implemen-
tation of this function using those techniques:

def sumfiles1(dir):

files = os.listdir(dir)

files = map(os.path.join,[dir] * len(files),files)

files = filter(lambda x:not os.path.isdir(x) and \

not os.path.islink(x),files)

sizes = map(os.path.getsize,files)

return reduce(lambda x,y:x + y,sizes,0)

In the previous example, only files in the specified directory were consid-
ered, and subdirectories were ignored. If the goal is to recursively search a
directory and all its subdirectories, one approach would be to write a func-
tion to search a single directory, and recursively call it each time another
directory is found. However, the walk function of the os.path module au-
tomates this process for you. The walk function accepts three arguments:
the starting path, a user-written function which will be called each time a
directory is encountered, and a third argument allowing additional informa-
tion to be passed to the user-written function. The user-written function is
passed three arguments each time it is called. The first argument is the third
argument which was passed to walk, the second argument is the name of
the directory which was encountered, and the third argument is a list of files
(returned by listdir). To extend the previous example to total up the file
sizes for all the files in a directory and recursively through all subdirectories,
we could create a function like the following:

def sumit(arg,dir,files):

files = map(os.path.join,[dir] * len(files),files)

files = filter(lambda x:not os.path.isdir(x) and \

not os.path.islink(x),files)

arg[0] = arg[0] + reduce(lambda x,y:x + y,map(os.path.getsize,files),0)

Since the return value of the user-written function is ignored, the total size
of the files encountered must be passed through the arg parameter of the

8.7. EXPANSION OF FILENAME WILDCARDS - THE GLOB MODULE125

function. Recall from Section 7.3 that only mutable objects can be modified
when passed to a function; thus a list is passed to the function, and the first
element of the list is used to accumulate the file sizes. (An alternative would
be to use global variables, but the use of such variables should always be
avoided when a reasonable alternative exists.) To call the function to sum
up the sizes of all the files rooted in the current directory, we would use walk
in the following way:

total = [0]

dir = ’.’

os.path.walk(dir,sumit,total)

print ’Total size of all files rooted at %s: %d bytes’ % (dir,total[0])

8.7 Expansion of Filename wildcards - the

glob module

Under the UNIX operating system, when a filename contains certain symbols,
the command shell expands these symbols to represent a list of files that
match a specified pattern. For example, if a file name of *.c is passed to
the UNIX shell, it will expand the name to represent all of the files in the
current directory which end with “.c”. In some applications, it would be
useful to be able to perform this expansion inside your program, without
the need to invoke a shell. The glob module provides the glob function
which accepts a filename wildcard expression, and returns a list with the
names of all the files which match the expression. One example of glob’s use
would be to perform filename expansion on the command line for a program
designed to run under Windows. A second example would be to find all
of the files that begin with a particular string and change that part of the
filename to some other string. The wildcard characters which are supported
are *, which represents zero or more of any character, ?, which represents
exactly one occurence of any character, and a list of characters contained
within square brackets ([]), which defines a character class similar to the
character classes in the re module (Section 8.5). Here’s one way to solve the
renaming problem, assuming that the old and new strings are passed as the
first and second command line arguments, respectively:

import sys,glob,re,os

126 CHAPTER 8. USING MODULES

(old,new) = sys.argv[1:3]

oldre = re.compile(old)

changefiles = glob.glob(old + ’*’)

for c in changefiles:

os.rename(c,oldre.sub(new,c,count=1))

(Reading command line arguments is covered in more detail in Section 8.8.)

Keep in mind that under Windows, the glob function is case insensitive,
while under UNIX it is not.

8.8 Information about your Python session -

the sys module

Information about the current Python session is provided through a number
of variables contained in the sys module. File objects for the three basic
input and output streams are stored in the variables stdin (standard input),
stdout (standard output), and stderr (standard error); details of their use
is presented in Section 5.5.

The array argv contains any arguments which were passed to your python
program, if it were called from the command line. The first element of
this array (argv[0]) contains the name of the script which is executing, or
an empty string if you are entering commands in the python interpreter.
(The getopt module can be used to aid in parsing command line flags and
arguments.)

The array path contains the names of the directories which will be searched
when you use an import statement. If you need to import a module which
is stored in a non-standard directory, you can simply append the name
of the directory to path before issuing an import command that utilizes
the non-standard directory. Keep in mind that the environmental variable
PYTHONPATH provides a means for automatically updating the Python system
path each time that you invoke Python.

The function object exitfunc will be called immediately before the in-
terpreter exits. Note that this is an actual function object, not just the name

8.9. COPYING: THE COPY MODULE 127

of a function to be called. No arguments should be passed to the function
stored in exitfunc.

Finally, the exit function of the sys module allows you to terminate the
current Python session. An optional integer argument represents an error
code; the value zero is used to indicate normal completion.

8.9 Copying: the copy module

As mentioned in Section 6.1, assignments generally create references to ob-
jects, and don’t really create a new location in memory containing a copy of
the data being assigned. For lists which contain simple data (such as scalar
numbers and scalar strings), simply providing a colon in the subscript when
copying is sufficient to make a true copy. The copy function of the copy

module provides this same capability through a function. Thus, given a list
of scalar values, the following two statements are equivalent:

newx = x[:]

newx = copy.copy(x)

If the elements of the object you’re trying to copy are not scalars, however,
the copy of x stored in newx will actually contain references to the non-scalar
objects, and not true copies of those objects. In cases like this, the deepcopy
function can be used. This function recursively duplicates all the elements
stored in a Python object, and provides a true copy of arbitrary objects in
most cases.

As a simple illustration of the difference between copy and deepcopy,
consider a list of lists. Note what happens to the two copied objects newx

and deepx when an element of one of the nested lists in the original object
x is changed:

>>> x = [[1,2,3],[’cat’,’dog’,’mouse’,’duck’],[7,8]]

>>> newx = copy.copy(x)

>>> deepx = copy.deepcopy(x)

>>>

>>> x[1][1] = ’gorilla’

>>> newx[1][1]

’gorilla’

>>> deepx[1][1]

’dog’

128 CHAPTER 8. USING MODULES

When we change an element in one of the nested lists of x, that change is
reflected in newx, since it simply copied references to each of the nested lists;
the value in deepx remains unchanged since it was created with a deep copy.
Of course, if we replace an element of the original list, Python will realize
that the copies are now the only objects referencing the original value, and
both types of copies will retain the original values; the difference between the
two methods of copying is only apparent when individual elements of nested
objects are modified:

>>> x[2] = [107,108]

>>> newx[2]

[7, 8]

>>> deepx[2]

[7, 8]

8.10 Object Persistence: the pickle/cPickle

and shelve modules

8.10.1 Pickling

Consider a situation where information is stored in a file, and you’ve written
a Python program to read that file and perform some operation on it. If
the contents of the file change regularly, there is usually no recourse but to
read the file each time you run your program. But if the contents of the file
don’t change very often, it may be worthwhile to store the data in a form
which is easier for Python to read than plain text. The pickle module takes
any Python object and writes it to a file in a format which Python can later
read back into memory in an efficient way. On systems that support it, there
will also be a cPickle module which is implemented in the C programming
language and will generally much faster than the Python implementaion; I’ll
refer to the cPickle module in the examples that follow. Especially in the
case where a large amount of processing needs to be done on a data set to
create the Python objects you need, pickling can often make your programs
run much faster. In the larger scheme of things, using a database may be a
more appropriate solution to achieve persistence. But the pickling approach
is very simple, and is adequate for many problems.

There are two steps to the pickling process: first, a Pickler object is

8.10. OBJECT PERSISTENCE: THE PICKLE/CPICKLE AND SHELVE MODULES129

created through a call to the Pickler function. You pass this function a
file (or file-like) object, such as that returned by the built-in open function.
(See Section 5.4). If you pass Pickler a second argument of 1, it will write
the pickled object in a more efficient binary format, instead of the default
human-readable format. Having created a Pickler object, you can now invoke
the dump method to pickle the object of your choice. At this point, you can
invoke the close method on the file object passed to Pickler, or you can
let Python close the file when your program terminates.

As a simple example, let’s consider a dictionary whose elements are dic-
tionaries containing information about employees in a company. Of course,
the real benefit of pickling comes when you are creating objects from some
large, external data source, but this program will show the basic use of the
module:

import cPickle,sys

employees = {

’smith’:{’firstname’:’fred’,’office’:201,’id’:’0001’,’phone’:’x232’},

’jones’:{’firstname’:’sue’,’office’:207,’id’:’0003’,’phone’:’x225’},

’williams’:{’firstname’:’bill’,’office’:215,’id’:’0004’,’phone’:’x219’}}

try:

f = open(’employees.dump’,’w’)

except IOError:

print >>sys.stderr, ’Error opening employees.dump for write’

sys.exit(1)

pkl = cPickle.Pickler(f,1)

pkl.dump(employees)

When the employee dictionary is needed in another program, all we need to
do is open the file containing the pickled object, and use the load function
of the cPickle module:

>>> import cPickle

>>> f = open(’employees.dump’,’r’)

>>> employees = cPickle.load(f)

>>> employees[’jones’][’office’]

207

130 CHAPTER 8. USING MODULES

>>> employees[’smith’][’firstname’]

’fred’

Pickling can offer an especially attractive alternative to databases when
you’ve created a class which represents a complex data structure. (Sec-
tion 10.4).

8.10.2 The shelve module

Notice that to create a pickled object the entire object must be in memory;
similarly, when you unpickle an object, you must read the entire object into
memory. When you’re dealing with very large amounts of data, the shelve

module may provide a better alternative. (It should be noted that interfacing
to a relational database may be a more useful solution in some cases. There
are a number of Python modules available to access many different databases;
see http://www.python.org/topics/database/modules.html for more in-
formation.) The shelve module creates a persistent, file-based version of an
object very similar to a Python dictionary, but data is only read from or
written to the file when necessary, for example when you need to access a
value stored in the file, or add a value to the file. One limitation of shelve
objects is that the keys to the objects must be strings, but the values stored
in a shelve object can be any Python object, as long as it can be written
with the pickle module.

To create a shelve object, use the open function from the shelve module,
providing the name of a file to be used to hold the shelve object. The shelve
module may call another program which will create more than one file, but
the open method will always find your shelved object when you refer to the
filename that was used when you first open the shelve object. If the file
you specify already exists, but is not a shelve object created in a previous
program, you’ll get a anydbm.error exception; otherwise the open function
will recognize a previously shelved object and open it. Since information is
written to the shelved object only when necessary, it’s important to invoke
the close method on any shelved objects you use to insure that changes that
you make during your program are properly stored.

Here’s the employee example revisited, using a shelve object. While
there’s not much advantage in shelving over pickling for such a small data
set, it will illustrate the basic ideas of using a shelve object.

>>> import shelve

8.11. CGI (COMMON GATEWAY INTERFACE): THE CGI MODULE131

>>> employees = {

... ’smith’:{’firstname’:’fred’,’office’:201,’id’:’0001’,’phone’:’x232’},

... ’jones’:{’firstname’:’sue’,’office’:207,’id’:’0003’,’phone’:’x225’},

... ’williams’:{’firstname’:’bill’,’office’:215,’id’:’0004’,

... ’phone’:’x219’}}

>>> try:

... emp = shelve.open(’employees.dat’)

... except IOError:

... print >> sys.stderr, ’Error opening employees.dat’

... sys.exit(1)

...

>>> for k in employees:

... emp[k] = employees[k]

...

>>> emp.close()

When we need to access the shelved data, we simply open the appropriate
file, and the data will be available:

>>> import shelve

>>> employees = shelve.open(’employees.dat’)

>>> employees[’jones’][’office’]

207

>>> employees[’smith’][’firstname’]

’fred’

>>>

8.11 CGI (Common Gateway Interface): the

cgi module

8.11.1 Introduction to CGI

When you type the address of a web page (i.e. a URL or Universal Resource
Locator) into a browser,or click a link which refers to a URL, a request is
made to a computer on the internet to send the contents of a web page to
your browser. Web pages are written in a language known as HTML (Hy-
pertext Markup Language), and your web browser knows how to translate
HTML into text, pictures, links, animations or whatever else the designer

132 CHAPTER 8. USING MODULES

of the web page had in mind. Alternatively, the address that your browser
requests might be a program, in which case that program will be run on the
web site’s computer, and the results of the program (most likely a header
followed by something written in HTML) will be transmitted to your web
browser. Through the use of forms or specially formatted URLs, you can pro-
vide information to that program, allowing on-line shopping, surveys, email
programs and other useful tools. CGI is the name given to the mechanism
used to transmit information to and from your web browser and a web site’s
computer. The cgi module provides a way for you to retrieve this informa-
tion, and to send HTML back in response to a submitted form.

Besides using a form which displays in a browser to retrieve information,
a specialized type of URL can be used to transmit information to a web site’s
computer. When this method is used, the program’s name is followed by a
question mark and a series of name=value pairs separated by ampersands.
For example, a URL to query a travel agency might look like this:

http://www.travelagency.com/cgi-bin/query?dest=Costa%20Rica&month=Jun&day=12

In this case, three variables are being transmitted: dest with a value of
“Costa Rica”; month, with a value of “Jun” and day, with a value of “12”.
(Notice that special characters like blanks need to be encoded as a percent
sign followed by two digits.) Alternatively, there might be a form with drop-
down menus, scrolling lists, or blanks to be filled in which would extract the
same information.

When you use a Python script as a CGI program, you create a FieldStorage
object using the FieldStorage function of the cgi module. This object be-
haves like a dictionary in many ways. For example, you can use the keys

method to get a list of all the variables which were sent to your program.
When you use any of these names as an index to the object returned by
FieldStorage, the result is a MiniFieldStorage object, which contains two
attributes: name and value. Thus, if the following Python program were
properly installed on the fictitious travel bureau’s web server, it would print
the destination, month and day specified in the URL:

import cgi

f = cgi.FieldStorage()

print "Content-type: text/html"

8.11. CGI (COMMON GATEWAY INTERFACE): THE CGI MODULE133

print

vars = f.keys()

for v in vars:

print ’%s = %s
’ % (v,f[v].value)

The two print statements before the loop produce the header which is nec-
essary for a browser to understand that what follows will be HTML which
needs to be appropriately processed before being displayed; the second of
these print statements produces a blank line which signals that the headers
are finished. The value of each of the variables transmitted through the CGI
program is stored in the value attribute of the MiniFieldStorage object
stored in the FieldStorage object named f. Since newlines are not respected
by HTML, the
 tag is used to insure that a line break appears between
the values displayed.

Alternatively, information can be transmitted to a CGI program through
from items which appear in your browser. The URL of the CGI program
appears in the action element of the <form> tag. The following (minimal)
HTML code will display the form shown in Figure 8.1; when the user makes
their selection and presses the “Submit” button, the CGI script presented
above will receive the information; the FieldStorage object will be created
appropriately whether the input comes from a URL or through a form.

<html>

<body>

<form method="post" action="/cgi-bin/query">

Destination: <input type="text" name="dest" size=40>

Month: <select name=month>

<option>Jan<option>Feb<option>Mar<option>Apr<option>May

<option>Jun<option>Jul<option>Aug<option>Sep<option>Oct

<option>Nov<option>Dec</select>

Day: <select name=day>

<option>1<option>2<option>3<option>4<option>5<option>6<option>7

<option>8<option>9<option>10<option>11<option>12 <option>13

<option>14<option>15<option>16<option>17<option>18<option>19

<option>20<option>21<option>22<option>23<option>24<option>25

<option>26<option>27<option>28<option>29<option>30<option>31

</select>

134 CHAPTER 8. USING MODULES

Figure 8.1: Simple HTML form

<center>

<input type=submit>

</center>

</form>

</body>

</html>

8.11.2 Security Concerns

If you write a CGI script that accepts information from the outside world, and
then uses that information to access another program (through, for example
the system function of the os module), it’s very important to make sure that
you don’t inadvertently send a malicious command to the operating system.
There are two things that will minimize the risk of this happening. First,
make sure that your CGI program has access to only the minimum set of
programs it needs by using a very simple command path; on unix, a line like
the following in your CGI script will serve this purpose.

os.environ[’PATH’] = ’/bin:/usr/bin’

Secondly, you should insure that any variables which are transmitted to
your program and will be used as part of an operating system command
do not contain any special characters; that is, they are composed of letters,
digits and the underscore only. Regular expressions (Section 8.5) can be
used to test this. For example, the following function ensures that any word
passed to it contains no special characters:

def chkname(name,extra=’’):

valid = r’\w’

if extra:

valid = r’[’ + valid + extra + r’]’

8.12. ACCESSING DOCUMENTS ON THE WEB: THE URLLIB MODULE135

Name Contents

HTTP COOKIE Persistent data stored in cookies
HTTP REFERER URL of refering document
HTTP USER AGENT Type of browser being used
QUERY STRING URL Fragment after ?
REMOTE ADDR IP Address of user
REMOTE HOST Hostname of user
REMOTE USER Username, if authentication was used
SERVER NAME Hostname of server
SERVER PORT Port number of server
SERVER SOFTWARE Name and version of server software

Table 8.6: Some Environmental Variables Passed through CGI

if re.match(r’^%s+$’ % valid,name):

return 1

else return 2

To accommodate common email addresses, extra=’@.’ could be passed to
chkname

8.11.3 CGI Environmental Variables

In addition to information which is transmitted through CGI variables (like
dest, month and day in the previous example), a large amount of information
is transfered to CGI programs through environmental variables. These vari-
ables can be accessed in your program in the usual way, that is, by using the
eviron dictionary of the os module. Table 8.6 lists the names and meanings
of some of these environmental variables.

8.12 Accessing Documents on the Web: the

urllib module

While the cgi module is useful on the server side of the World Wide Web,
the urlopen is useful when developing applications that act as clients to
the World Wide Web. While Python can be written to write full scale
browsers (see the Grail project at http://grail.sourceforge.net), the

136 CHAPTER 8. USING MODULES

urllib module is most useful when writing applications that try to auto-
mate interaction with the web.

The core of the module is the urlopen function. This function accepts
a URL as an argument, and returns a file-like object which allows you to
access the contents of the URL using any of the standard file methods (read,
readline, or readlines; see Section 5.4.1 for details). An optional second
argument is a url-encoded string (see the urlencode function below) which
provides data to be sent to the URL if it is a CGI program. If the URL
provided does not begin with a http:// or ftp://, the request is treated as
a local file.

As a simple example of the use of the urlopen function, the CNN web
site, http://www.cnn.com, displays the top headline in a prominent font; at
the time of this writing, the top headline can be indentified as the anchor on
a line identified with a class of cnnMainT1Headline. Since the headline is
an active link, it is surrounded by anchor tags, i.e. <a> or <A> and or
. We can write a regular expression to extract the headline from these
tags:

headlinepat = re.compile(r’<.*cnnMainT1Headline.*><a.*>(.*)’,re.I)

All that remains is to access the contents of the page with the urllopen

function:

try:

f = urllib.urlopen(’http://www.cnn.com’)

except IOError:

sys.stderr.write("Couldn’t connect to CNN website\n")

sys.exit(1)

contents = f.read()

headline = headlinepat.findall(contents)

print headline[0]

Since findall returns a list, only the first element of the list is printed.
The urlopen function can also be used to post data to a CGI program.

The information to be posted can either be embedded in the URL itself, or it
can be sent to the URL through headers. In the first case, it is important to
make sure that special characters (blanks, punctuation, etc.) are converted
to the appropriate codes using the quote function of the urllib module. In

8.12. ACCESSING DOCUMENTS ON THE WEB: THE URLLIB MODULE137

the second case, the urlencode function accepts a dictionary of values, and
converts them to the appropriate form:

>>> travelplans = {’dest’: ’Costa Rica’,’month’: ’Jun’,’day’ : 25}

>>> urllib.urlencode(travelplans)

’month=Jun&day=25&dest=Costa+Rica’

We could contact the fictitious travel agency CGI program in Section 8.11.1
with a program like this one:

urllib.urlopen(’http://www.travelagency.com/cgi-bin/query’,\

urllib.urlencode(travelplans))

As a more realistic example, many websites offer stock quotes, by accept-
ing a company’s ticker tape symbol as part of a query string specified in
their URL. One such example is http://www.quote.com; to display a page
of information about a stock with ticker tape symbol xxx, you could point
your browser to

http://finance.lycos.com/home/stocks/quotes.asp?symbols=xxx

Examination of the HTML text returned by this URL shows that the current
quote is the first bold (i.e. between and tags) text on the line
following a line with the time at which the quote was issued. We can extract
a current quote for a stock with the following function:

import sys,re,urllib

def getquote(symbol):

lspat = re.compile(’\d?\d:\d\d[ap]m .+T’)

boldpat = re.compile(’(.*?)’,re.I)

url = ’http://finance.lycos.com/home/stocks/quotes.asp?symbols=%s’ % \

symbol

f = urllib.urlopen(url)

lastseen = 0

while 1:

line = f.readline()

if not line : break

if lastseen:

quote = boldpat.findall(line)[0]

138 CHAPTER 8. USING MODULES

break

if lspat.search(line):

lastseen = 1

return quote

The syntax of the URLs accepted by urlopen allows embedding a user-
name/password pair or optional port number in the URL. Suppose we wish
to access the site http://somesite.com, using user name myname and pass-
word secret, through port 8080 instead of the usual default of 80. The
following call to urlopen could be used:

urllib.urlopen(’http://myname:secret@somesite.com:8080’)

A similar scheme can be used to access files on FTP (File Transfer Protocol)
servers. For more control over FTP, Python also provides the ftplib module.

Chapter 9

Exceptions

9.1 Introduction

One of the basic principles of Python mentioned in Chapter 1 was the idea
of exception handling. Unlike many languages, which leave the business
of error handling to the programmer using the language, Python handles
errors in a consistent way – when an error is encountered, Python prints
a descriptive message, and terminates execution. But beyond this default
behaviour, Python provides a simple way to trap these errors and either
ignore them, fix them, or decide that program termination really is the best
idea. The basic notion of the try/except clause has already been introduced;
in this chapter we’ll discuss its use more thoroughly, as well as look at how
to create new exceptions, and how to raise exceptions within your programs.

9.2 Tracebacks

Whenever you use a try/except clause, the programming statements con-
tained in the try portion of the code are executed in a “protected” environ-
ment, in the sense that errors occurring in that code will not cause python
to terminate. Instead, you have the opportunity to catch and examine the
error, and take the action of your choice. Perhaps the most classic example
of the try/except clause is to catch problems when you attempt to open
a file. Let’s take a look at what happens when we try to open a file that
doesn’t exist:

>>> f = open(’not.a.file’)

139

140 CHAPTER 9. EXCEPTIONS

Traceback (innermost last):

File "<stdin>", line 1, in ?

IOError: [Errno 2] No such file or directory: ’not.a.file’

The traceback provided by Python contains useful information. First, the
line and file in which the error was encountered is displayed. While this is
not of much use in an interactive session, it is invaluable when running your
Python programs from a file. The final line of the traceback is especially
important when considering how to deal with problems that might arise in
your program, since it gives the name of the exception which was encountered.
Many exceptions also provide specific information about the nature of the
exception, like the “No such file or directory” message in this example. You
can capture this additional information in a variable by specifying the name
of that variable after the name of the exception you’re catching, separated
by a comma.

>>> try:

... f = open(’not.a.file’)

... except IOError,msg:

... print msg

...

[Errno 2] No such file or directory: ’not.a.file’

If Python encountered this code in a program it was executing, the program
would not terminate after failing to open the file, since the IOError was
trapped. In many situations, you’ll want to terminate your program when
you encounter an exception, by calling the exit function of the sys module
(See Section 8.8 for details.)

9.3 Dealing with Multiple Exceptions

Although it is often common to have just a few statements as part of a
try/except clause, you may want to run a larger section of code in such a
clause, and then organize all the exception handling after that block of code.
As a simple example, suppose we have a dictionary, mapping user’s names to
the location of a file with information about the user. Given a user’s name,
our program will look up the file name in the dictionary, and then print the
file. In the course of doing this, two different exceptions may arise. First, if

9.3. DEALING WITH MULTIPLE EXCEPTIONS 141

the user is not in the dictionary, then a KeyError exception will be raised; if
the file can’t be open, then an IOError exception will be raised. First, here’s
a code fragment that catches both of these errors in a single except clause:

userdict = {’john’:’/home/john/infofile’,

’sue’:’/users/sue/sue.info’,

’fred’:’/home/fred/info.fred’}

user = ’joe’

try:

thefile = userdict[user]

print open(thefile).read()

except (KeyError,IOError):

sys.stderr.write(’Error getting information for %s\n’ % user)

Alternatively, each exception can be dealt with individually.

try:

thefile = userdict[user]

print open(thefile).read()

except KeyError:

sys.stderr.write(’No information for %s is available\n’ % user)

except IOError,msg:

sys.stderr.write(’Error opening %s: %s\n’ % (thefile,msg)

When you use multiple except clauses, Python will execute the code in the
first clause it encounters for which that exception is true, and then execute
the code after the entire try/except construction. Notice that any exception
other than a KeyError or IOError will be handled in the usual way, namely
Python will print a traceback and exit. You can catch all types of errors
by including an except statement with no exception name, but this practice
should generally be avoided, since all exceptions, including syntax errors,
incorrect function calls and misspelled variable names, will be trapped by
such a statement. In general, different errors need different remedies, and
part of proper exception handling consists of determining exactly what should
be done when different errors are encountered.

142 CHAPTER 9. EXCEPTIONS

9.4 The Exception Hierarchy

When you have several except clauses as part of a try/except construct,
and an exception is raised, the statements after the first except clause which
is matched will be executed. Usually this will not cause any surprises, but
there is a hierarchy of exceptions in Python so that exceptions higher in
the hierarchy will be activated even though they are not an exact match for
the exception that has been raised. For example, the EnvironmentError

exception will catch both IOErrors and OSErrors. Thus, when you cre-
ate try/except clauses in your programs, the ordering of the exceptions
may affect they way that their corresponding code is called. Continuing
with the EnvironmentError example, if an except clause for an OSError

appeared after an except clause for an EnvironmentError within the same
try/except construction, the OSError clause would never be activated, since
the EnvironmentError would intercept the exception, and only one excep-
tion per try/except construct will ever be activated. On the other hand, if
the EnvironmentError clause appeared after the OSError clause, it would
be activated when an IOError was raised, since that exception is below
EnvironmentError in the exception hierarchy. Figure 9.1 illustrates the hi-
erarchy; exceptions which are indented below other exceptions will be caught
by the less indented exception as well as through their own names.

9.5 Raising Exceptions

In addition to responding to exceptions in other programs, you can raise
exceptions in your own programs.

You can raise any of the existing exceptions, or you can create new ones
of your own. Figure 9.1 lists all the built-in exceptions; you can also find
their names by examining the directory of the __builtins__ object; all the
exceptions contain the string “Error” or “Exit”.

You can create your own exceptions as subclasses of the built in Exception

class. (Creating and working with classes is described in detail in Chap-
ter 10.4.) To create a new exception called MyError, the following code can
be used:

class MyError(Exception):

pass

9.5. RAISING EXCEPTIONS 143

Exception
StandardError

Arithmetic Error
FloatingPointError

OverflowError

ZeroDivisionError

AssertionError

AttributeError

EnvironmentError

IOError

OSError

EOFError

ImportError

KeyBoardInterrupt

LookupError

IndexError

KeyError

MemoryError

NameError

RuntimeError

SyntaxError

SystemExit

TypeError

ValueError

Figure 9.1: Exception Hierarchy

144 CHAPTER 9. EXCEPTIONS

The pass statement serves as a placeholder in situations when Python ex-
pects a statement, but you don’t need to do anything. No further details are
needed to create a usable exception.

After creating an exception, you can use the raise statement to activate
it. Suppose we are writing a function which will create an archive of files
on a 100Mb zip disk. Before writing the archive, we will check to make sure
that all the files will fit on the disk; if they will not, we’ll raise a SizeError

exception. In this way, the calling program can decide on what action is
appropriate. Here is the code to define the exception and create the archive:

import shutil,os

class SizeError(Exception):

pass

def mkarchive(dir,capacity=100*1024*1024):

files = os.listdir(dir)

totalsize = 0

for f in files:

totalsize = totalsize + os.getsize(os.path.join(dir,f))

if totalsize > capacity:

raise SizeError(dir)

for f in files:

shutil.copy(os.path.join(dir,f),os.path.join(’/zip’,f))

Note that the copy function may very well raise exceptions of its own; how-
ever, since we’ve defined our own SizeError exception, we’ll be able to
distinguish between the two types of error.

Now consider how we might use this function. Suppose that we’re going
to create several archives, with a program that will prompt us to change
disks between each archive. The following program would repeatedly call the
mkarchive function, printing appropriate status messages after each call:

dirs = [’/home/joe/papers’,’/home/sue/backup’,’/home/fred/save’]

for d in dirs:

print ’Insert zip disk and hit return ’,

sys.stdin.readline()

9.5. RAISING EXCEPTIONS 145

try:

mkarchive(dir)

print ’Archived %s to zip disk’ % dir

except SizeError,msg:

print ’Directory %s too large for zip disk’ % msg

except IOError,msg:

print ’Error archiving directory %s : %s’ % (dir,msg)

Notice that the print statement after the call to mkarchive will only be
executed if no exception was encountered in the function call.

While it’s natural to think of raising exceptions when an error is detected,
exceptions can be used in other situations as well. Recall the walk function
introduced in Section 8.6. This function will traverse a directory, calling
a user-written function each time a new directory is encountered. Suppose
we wish to write a program to search for a file with a particular name,
but we’d like the program to stop searching as soon as it finds such a file.
While we could exit the program entirely (by calling sys.exit), there’s no
way to simply return from the walk function until all the directories have
been traversed without exceptions. We could create an exception, raise that
exception once the filename has been found, and put the call to walk inside
a try/except loop. The following program implements that strategy.

import os

class FoundException(Exception):

pass

def chkname(name,dir,files):

if name in files:

raise FoundException(os.path.join(dir,name))

name = ’errno.h’

startdir = ’/usr/include’

try:

os.path.walk(startdir,chkname,name)

print ’%s not found starting at %s’ % (name,startdir)

except FoundException,pathname:

print ’%s found: %s’ % (name,pathname)

146 CHAPTER 9. EXCEPTIONS

A similar strategy can be employed to make a “panic” exit from inside of
deeply-nested loops.

Chapter 10

Writing Modules

10.1 Introduction

In Python, a module is simply a file which contains Python code and which
can be imported into some other program. Thus, if you have a collection of
functions which you’d like to use in other python programs, you can simply
put them all in one file, say myfunctions.py, and use the import statement
to make those functions available to you. If your module is located in your
working directory, Python will always find it. Otherwise, it must be located
in Python’s search path. You can view the search path with the following
Python statements:

import sys

sys.path

Since sys.path is just a list, you can append the names of other directories
to search onto this list before using an import statement, to allow you to
access modules which are not on the search path. But if you keep your mod-
ules in one location, a more useful approach may be to set the PYTHONPATH

environmental variable to that location in the appropriate startup file for
your operating system. That way, all the Python programs you run will be
able to use your modules.

147

148 CHAPTER 10. WRITING MODULES

10.2 An Example

As a simple example of a module, we’ll write three functions which would be
useful if you were working with files. The first, which we’ll call lline, will
return the length of the longest line encountered in a file. The second, which
we’ll call wcount will be a python version of the UNIX command wc, which,
given a file name, returns the number of lines, words and characters contained
in the file. The final function, which we’ll call ccount, will count the number
of occurences of a given character in a file. To make these functions available
for use in programs, we’ll store the python code for these three functions in a
file called fileutil.py, stored in either the current directory, or one of the
directories in the python search path. The following code implements these
three functions:

def lline(filename):

f = open(filename,’r’)

longest = 0

for line in f:

lennow = len(line) - 1

if lennow > longest:

longest = lennow

f.close()

return longest

def wcount(filename):

f = open(filename,’r’)

nlines = nwords = nchars = 0

for line in f:

nlines = nlines + 1

nwords = nwords + len(line.split())

nchars = nchars + len(line)

f.close()

return (nlines,nwords,nchars)

def ccount(filename,char=’\t’):

f = open(filename,’r’)

found = 0

for line in f:

10.2. AN EXAMPLE 149

found = found + line.count(char)

f.close()

return found

A few comments on the design of these functions is in order. Notice that,
unlike previous examples, the calls to open are not enclosed in a try/except

clause. Since these functions are designed to be imported into a program
which will call them, the decision was made to allow any exceptions which
are raised to “filter up” to the calling program, where the programmer who
was calling the functions would be expected to deal with them This is a
decision which should not be ignored when designing a module; in the current
example, since there’s not much that these functions can do if they can’t open
the file that was passed to them, the decision to pass the responsibility of
dealing with exceptions to the caller of the function seemed reasonable. In
other cases, it might be more appropriate to trap the exception, especially
when some useful alternative in the face of the exception is possible.

In the lline function, the newline was not included in the length of the
longest line – in practice, it might be more useful to pass another argument
to the function which would allow you to include the newline in the reported
length.

In the ccount function, the default character to search for is defined to
be a tab. This is an arbitrary choice, but it would make the function easy
to use when trying to decide whether or not to use white space or tabs as
a separator when reading data from a file. For other situations, a different
default character might be more reasonable.

To use these functions, we can simply import them in the usual way
(provided they reside in a directory on python’s search path.) For example,
to check a list of files passed on the command line to insure that none of
them have any lines longer than 80 characters, we could write a program like
the following one:

#!/usr/local/bin/python

import sys,fileutil

for file in sys.argv[1:]:

ll = fileutil.lline(file)

if ll > 80:

print ’Long line (%d chars) found in %s’ % (ll,file)

150 CHAPTER 10. WRITING MODULES

If you only needed one function from the module, individual functions could
be imported from fileutil in the usual way (See Section 8.2). In fact,
once you’ve written a module in Python, and that module’s directory is on
the Python search path, there’s very little difference between a user-written
module and a module that’s a part of Python itself.

10.3 Test Programs for Modules

When you write a collection of functions, it’s a very good idea to write a
test program, to make sure that the functions are doing what you expect.
That way, if you decide to make changes to the functions at some point in
the future, you can quickly check to see if the functions still work. Of course,
one way to create a test program would be to write the program in a separate
file from the module itself. However, Python provides a convenient way to
keep your test program in the same file as the module itself.

Remember that when you import a module into a Python program that
the contents of the module are executed when the import statement is en-
countered. Thus, you can’t just include your test program in your module,
or it will be executed every time the module is imported. But Python pro-
vides a builtin variable called __name__, which will be equal to the name
of a module when the module is imported, but will be equal to the value
“__main__” when a program is executed directly. Thus, we could include a
test program for the strfunc module by including the following lines in the
file strfunc.py after the function definitions:

if __name__ == ’__main__’:

import sys

files = sys.argv[1:]

for f in files:

print ’Processing %s’ % f

print ’ Longest line is %d characters’ % lline(f)

print ’ File contains %d lines, %d words, and %d characters’ % wcount(f)

print ’ The file contains %d spaces’ % ccount(f,’ ’)

print

Now when the program is invoked directly (for example through the execfile
function, or by typing the program’s name at a shell prompt), the test pro-

10.4. CLASSES AND OBJECT ORIENTED PROGRAMMING 151

gram will be run, but when the module is imported into another program, the
test program is ignored. Notice that in this example, since the sys module
is not needed for the functions defined in the fileutil module, the import

statement for that module was placed after the if statement which checks
for the value of __name__.

10.4 Classes and Object Oriented Program-

ming

Creating a module with a set of functions to perform useful tasks is certainly
an effective way to approach many problems. If you find that this approach
can solve all your problems, you may be content to use it and not explore
other possible ways of getting things done. However, Python provides a
simple method for implementing object oriented programming through the
use of classes. We’ve already seen situations where we’ve taken advantage of
these ideas through the methods available for manipulating lists, dictionaries
and file objects. File objects in particular show the power of these techniques.
Once you create a file object, it doesn’t matter where it came from - when you
want to, say, read a line from such an object, you simply invoke the readline
method. The ability to do what you want without having to worry about
the internal details is a hallmark of object oriented programming. The main
tool in Python for creating objects is the class statement. When you create
a class, it can contain variables (often called attributes in this context) and
methods. To actually create an object that you can use in your programs,
you invoke the name of its class; in object oriented lingo we say that the
class name serves as a constructor for the object. Methods are defined in
a similar way to functions with one small difference. When you define a
method, the first argument to the method should be called self, and it
represents the object upon which the method is acting. Even though self is
in the argument list, you don’t explicitly pass an object name through this
argument. Instead, as we’ve seen for builtin methods, you follow the name
of the object with a period and the method name and argument list.

152 CHAPTER 10. WRITING MODULES

Method Use

__init__(object) called when class constructor is invoked
__repr__(object) also called when object name typed in interpreter
__del__(object) called when an object is destroyed
__str__(object) called by print(object)

__len__(object) called by len(object)

__getitem__(object,key) allows you to intercept subscripting requests
__setitem__(object,key,value) allows you to set values of subscripted items
__getslice__(object,start,fin) allows you to intercept slice requests
__setslice__(object,start,fin,value) allows you to set slices
__add__(object,other) called by object + other

__radd__(object,other) called by other + object

__sub__(object,other) called by object - other

__mul__(object,other) called by object * other

__mod__(object,other) called by object % other

Table 10.1: Methods for Operator Overloading

10.5 Operator Overloading

Besides creating methods of our own, we can change the meaning of the way
that many familiar operators work, a technique known as operator overload-
ing. Special methods, whose names begin and end with double underscores,
can be defined to “intercept” many common operators, allowing you to rede-
fine what such operators as print, + and * or functions like len will do when
they’re applied to the objects you create. One of the most important oper-
ator overloading methods is the __init__ method. This method is called
whenever the class name is used as a constructor, and allows you to initialize
attributes in your object at the same time as you create it. The __str__

method is called through the print statement; the __repr__ method is called
when an object’s name is typed in the interpreter. Table 10.1 lists some of
the more commonly used methods for overloading.

In addition, you can define what happens when your object is iterated over
by means of the for statement by defining an __iter__ method that simply
returns the object itself, and providing a next method which will be called for
each iteration. Inside the next method, you need to raise a StopIteration

exception when no more items are available. (See Section 10.10 for an exam-
ple.

10.6. PRIVATE ATTRIBUTES 153

10.6 Private Attributes

In many object-oriented languages, certain attributes can be declared as
private, making it impossible for users of a class to directly view or modify
their values. The designer of the class then provides methods to control the
ways in which these attributes can be manipulated. While Python classes
don’t have true private attributes, if an attribute name begins with two
underscores, the Python interpreter internally modifies the attribute’s name,
so that references to the attribute will not be resolved. (Of course anyone
willing to look up the way in which the attribute name is “mangled” could
still access it.) Through this convention, you can create attributes which will
only be available within the methods you define for the class, giving you more
control over the way users of your class will manipulate those attributes.

10.7 A First Example of Classes

To clarify these ideas, we’ll consider a simple example – an “interactive”
database of phone numbers and email addresses. To get started with de-
signing a class, it’s often easiest to think about the information you’re going
to manipulate when you eventually operate on that class. You don’t need
to think of everything the first time you create the class; one of the many
attractive features of working with classes is that you can easily modify them
as you get deeper into solving a problem. In the case of our database, the
basic information we’ll be storing will be a name, an phone number and an
email address. We’ll call the class that will hold this information Friend,
and when we actually store our information it will be in what is generically
known as an object; in this case a Friend object. We can define methods by
indenting their definitions under the class statement.

When we create a Friend object, all we need to do is store the name,
phone number and email address of a friend, so the __init__ method will be
very simple – we just need to create three attributes which we’ll call name,
phone and email. This object will serve as a building block for our database,
so we don’t need to define many other methods. As an example, we’ll create
a __str__ method, and an identical __repr__ method so that we can display
information about our friends in a readable format.

>>> class Friend:

... def __init__(self,name,phone=’’,email=’’):

154 CHAPTER 10. WRITING MODULES

... self.name = name

... self.phone = phone

... self.email = email

... def __str__(self):

... return ’Name: %s\nPhone: %s\nEmail: %s’ % \

(self.name,self.phone,self.email)

... def __repr__(self):

... return self.__str__()

...

>>> x = Friend(’Joe Smith’,’555-1234’,’joe.smith@notmail.com’)

>>> y = Friend(’Harry Jones’,’515-2995’,’harry@who.net’)

>>> print x

Name: Joe Smith

Phone: 555-1234

Email: joe.smith@notmail.com

>>> y

Name: Harry Jones

Phone: 515-2995

Email: harry@who.net

Just as with functions, we can provide default values for arguments passed
to methods. In this case, name is the only required argument; the other two
arguments default to empty strings. Notice that attributes are refered to as
self.name; without the leading self, variables will be treated as local, and
will not be stored with the object. Finally, notice that the print operator
as well as the interactive session’s default display have been overridden with
the __str__ and __repr__ methods, respectively.

Now, we can create a database containing information about our friends,
through the Frienddb class. To make it useful, we’ll introduce persistence
through the cPickle module introduced in Section 8.10.1. When we first
create the database, we’ll require the name of a file. If the file exists, we’ll
assume it’s a database we’ve already created and work with that; if the file
doesn’t exist, we’ll open it and prepare it to receive our pickled database.
For this simple application, we can simply create a list of Friend objects,
and store the list as an attribute in our Frienddb object.

When designing an object oriented application like this, we simply need
to identify the operations we’ll want to do on the object we’ve created. In
addition to the __init__ method, some of the tasks we’d want to implement

10.7. A FIRST EXAMPLE OF CLASSES 155

would be adding a new friend to the database, searching the database for
information about a particular person, and storing the database when we’re
done with it. (In the following sections, it’s assumed that the class definition
for Friend is either in the same file as the Frienddb definition or has been
properly imported along with the other appropriate modules (os,cPickle,
sys,re and string). In addition, the following class statement will have
appeared before the definition of these methods:

class Frienddb:

The __init__ method for our database will take care of all the dealings
with the file in which the database will be stored.

import sys

class Frienddb:

def __init__(self,file=None):

if file == None:

print ’Must provide a filename’

return

self.file = file

if os.path.isfile(file):

try:

f = open(file,’r’)

except IOError:

sys.stderr.write(’Problem opening file %s\n’ % file)

return

try:

self.db = cPickle.load(f)

return

except cPickle.UnpicklingError:

print >>sys.stderr, ’%s is not a pickled database.’ % file

return

f.close()

else:

self.db = []

Since the __init__ statement acts as a constructor for class objects, it should
never return a value. Thus, when errors are encountered, a return statement
with no value must be used. This method puts two attributes into our

156 CHAPTER 10. WRITING MODULES

Frienddb object: file, the name of the file to store the database, and db,
the list containing Friend objects (if the database already exists) or an empty
list if there is not a file with the name passed to the method.

The method for adding an entry to the database is simple:

def add(self,name,phone=’’,email=’’):

self.db.append(Friend(name,phone,email))

Searching the database is a little more complex. We’ll use the re mod-
ule (Section 8.5) to allow regular expression searches, and return a list of
Friend objects whose name attributes match the pattern which is provided.
Since we’ll be searching each name in the database, the regular expression is
compiled before being used.

def search(self,pattern):

srch = re.compile(pattern,re.I)

found = []

for item in self.db:

if srch.search(item.name):

found.append(item)

return found

Finally, we’ll write methods to store the contents of the database into the file
that was specified when the database was created. This is just a straightfor-
ward use of the cPickle module (Section 8.10.1). To insure that data is not
lost, a __del__ method which simply calls the store method (provided that
there were entries in the database) will be added as well:

def store(self):

try:

f = open(self.file,’w’)

except IOError:

print >>sys.stderr, \

’Problem opening file %s for write\n’ % self.file

return

p = cPickle.Pickler(f,1)

p.dump(self.db)

f.close()

def __del__(self):

10.7. A FIRST EXAMPLE OF CLASSES 157

if self.db:

self.store()

Having created these two classes, we can now write a simple program to use
them. You might want to include such a program in the file containing the
class definitions; if so, see Section 10.3. We’ll write a small interactive pro-
gram that will recognize three commands: “a”, which will cause the program
to prompt for a name, phone number and email address and the add it to
the database, “? pattern”, which will print all the records whose name
attribute matches pattern, and q, which will store the database and exit. In
the program that follows, I’m assuming that the class definitions for Friend
and Frienddb are stored in a file called frienddb.py which is in a directory
on the python search path.

import frienddb

file = raw_input(’File? ’)

fdb = Frienddb(file)

while 1:

line = raw_input(’> ’)

if line[0] == ’a’:

name = raw_input(’Name? ’)

phone = raw_input(’Phone number? ’)

email = raw_input(’Email? ’)

fdb.add(name,phone,email)

elif line[0] == ’?’:

line = string.strip(line[1:])

fdb.search(line)

elif line[0] == ’q’:

fdb.store()

break

Other methods could be implemented as well. While not necessarily that
useful, suppose we wanted to access elements of our database either by a
numeric index, indicating their position in the database, or by the name

attribute of the individual records. Using the __getitem__ method, we could
subscript the database just as we do lists or dictionaries. To properly process
both string and numeric indices, we’d need to distinguish between these two
types of values. One way to do this is by trying an numeric conversion of the

158 CHAPTER 10. WRITING MODULES

index with the int function; if an exception is thrown, then we must have a
string value.

def __getitem__(self,key):

try:

index = int(key)

return self.db[index]

except ValueError:

found = 0

for item in self.db:

if item.name == key:

return item

raise KeyError(key)

If a string is given, and no record with that name is found, the method simply
raises the builtin KeyError exception, allowing the caller of the method to
decide how to handle this case. Now we can access the database through
subscripts:

>>> import frienddb

>>> fdb = frienddb.Frienddb(’friend.db’)

>>> fdb[0]

Name: Harry Smith

Phone: 443-2199

Email: hsmith@notmail.com

>>> fdb[1]

Name: Sue Jones

Phone: 332-1991

Email: sue@sue.net

>>> fdb[’Harry Smith’]

Name: Harry Smith

Phone: 443-2199

Email: hsmith@notmail.com

10.8 Inheritance

One of the biggest benefits of the class-based approach to programming is
that classes can inherit attributes and methods from other classes. If you

10.8. INHERITANCE 159

need to work with an object that’s very similar to some other object that
has already been developed, your new object can inherit all of the old object’s
methods, add new ones, and/or overwrite the ones which need to change.

Continuing with our little database example, suppose that you found the
friend database so useful at home, that you’d like to extend it into a database
to keep track of business contacts. It would be very helpful to have a few
additional fields in the database, let’s say a company name and the type of
product that the company produces. Following the example of the Friend

object, we could create a Contact object as follows:

class Contact:

def __init__(self,name,company,phone=’’,email=’’,product=’’):

self.name = name

self.company = company

self.phone = phone

self.email = email

self.product = product

def __str__(self):

return ’Name: %s\nCompany: %s\nPhone: %s\nEmail: %s\nProduct: %s’ % \

(self.name,self.company,self.phone,self.email,self.product)

def __repr__(self):

return self.__str__()

Now we’d like to create an object that would let us store, add and search a
database of contacts. The details of opening files, pickling, searching, and
indexing really haven’t changed – our Contactdb object can simply inherit
all of them from the Frienddb object. The only real change is that now we’ll
be storing Contact objects in the list called db inside of the object instead
of Friend objects, so we’ll need to overwrite the add method:

from frienddb import Frienddb

class Contactdb(Frienddb):

def add(self,name,company,phone=’’,email=’’,product=’’):

self.db.append(Contact(name,company,phone,email,product))

160 CHAPTER 10. WRITING MODULES

By putting the name of another class (Frienddb) in parentheses after the
name of our new class (Contactdb) we’re informing Python that this class
will inherit methods and attributes from that old class. If we invoke a method
or try to access an attribute that’s been explicitly defined for our new class,
Python will use the one we’ve defined. But if we refer to a method or attribute
we haven’t explicitly defined, it will refer to that method or attribute in
the so-called “parent” class. (Python even supports multiple inheritance; if
you have a comma-separated list of classes in parentheses after your class
name, python will search each of them in turn for methods or attributes
not explicitly defined for the new class.) Thus after simply defining the add

method, we can create and use our contact database:

>>> import contactdb

>>> fdb.search(’harry’)

[Name: Harry Smith

Phone: 443-2199

Email: hsmith@notmail.com]

>>> cdb = contactdb.Contactdb(’new.db’)

>>> cdb.add(’Mary Wilson’,’Brainpower, Inc.’,’222-3292’,

... ’mw@brainpower.net’,’consulting’)

>>> cdb.add(’John Jenkins’,’Advanced Microstuff’,’321-9942’,

... ’jjenkins@advmicro.com’,’disk drives’)

>>> cdb.add(’Fred Smith’,’Hitech Storage’,’332-1994’,

... ’fredsmith@hitechstorage.com’,’magnetic tape’)

>>> cdb.add(’Al Watson’,"Brains ’r Us",’335-2324’,

... ’al@brains.net’,’consulting’)

>>> cdb.search(’mary’)

[Name: Mary Wilson

Company: Brainpower, Inc.

Phone: 222-3292

Email: mw@brainpower.net

Product: consulting]

>>> cdb[3]

Name: Al Watson

Company: Brains ’r Us

Phone: 335-2324

Email: al@brains.net

Product: consulting

10.8. INHERITANCE 161

>>> cdb[’John Jenkins’]

Name: John Jenkins

Company: Advanced Microstuff

Phone: 321-9942

Email: jjenkins@advmicro.com

Product: disk drives

All of the methods we implemented for the Frienddb class work correctly
with our new class. Since we defined a Contact object, and explicitly defined
an add method to use it, Python knows how to display the contacts properly.

Now suppose that we want to expand the search method to allow us to
specify, using a keyword argument, whether we wish to search the database
for a name, a company or a product. We’ve already developed a method
to search for names when we wrote the Frienddb class, so we can use that
when we’re searching for names, and add additional code to handle the other
cases. When you need to access a method from another class, you need to
treat the method like a regular function. In other words, instead of following
self with the method name, you call the function with self as the first
argument to the method, as illustrated below when the search method from
the Frienddb class is invoked in our new search method:

def search(self,name=’’,company=’’,product=’’):

results = []

if name:

found = Frienddb.search(self,name)

results.extend(found)

if company:

srch = re.compile(company,re.I)

found = []

for item in self.db:

if srch.search(item.company):

found.append(item)

results.extend(found)

if product:

srch = re.compile(product,re.I)

found = []

for item in self.db:

162 CHAPTER 10. WRITING MODULES

if srch.search(item.product):

found.append(item)

results.extend(found)

return results

(As in previous examples, this method would only make sense if it was part of
the definition for the class Contactdb.) Now we can search for either names,
companies or products:

>>> cdb = contactdb.Contactdb(’new.db’)

>>> found = cdb.search(product=’consult’)

>>> for i in found:

... print ’-’ * 10

... print i

...

Name: Mary Wilson

Company: Brainpower, Inc.

Phone: 222-3292

Email: mw@brainpower.net

Product: consulting

Name: Al Watson

Company: Brains ’r Us

Phone: 335-2324

Email: al@brains.net

Product: consulting

>>> found = cdb.search(name=’mary’)

>>> print found[0]

Name: Mary Wilson

Company: Brainpower, Inc.

Phone: 222-3292

Email: mw@brainpower.net

Product: consulting

10.9. ADDING METHODS TO THE BASIC TYPES 163

10.9 Adding Methods to the Basic Types

While we started completely from scratch in designing methods and objects
in the previous sections, many times the need for a new object can be met
by simply adding one or two methods to an existing basic data type. To
facilitate this, python provides the UserString, UserList and UserDict

classes. These classes store a regular object in the data attribute, and allow
you to quickly create new objects which have all the usual methods of a
string, list or dictionary along with any new methods you care to define.

As an example, suppose we wish to create a dictionary that will “remem-
ber” the order in which entries are added. Of course, this could be done
by explicitly keeping a list of the keys, but would be awkward to implement
because each time an entry was added to the dictionary, a separate state-
ment would be needed to update the list. By overloading the __setitem__

method, we can store each key as it is encountered; by providing a new
method (say, okeys), we can retrieve the ordered list. To simplify matters,
the __init__ method will not accept any arguments, so that the dictionary
must be built incrementally. (When a dictionary is initialized in the usual
way, the keys are added in a random order.) Here’s an example of how such
a dictionary could be implemented:

from UserDict import UserDict

class ODict(UserDict):

def __init__(self):

self._okeys = []

self.data = {}

def __setitem__(self,key,value):

self.data[key] = value

if key not in self._okeys:

self._okeys.append(key)

def okeys(self):

return self._okeys

After creating an object of type ODict, we can manipulate it just as any
other dictionary, since, when you invoke an existing method, the UserDict

class knows to operate on the data attribute of the object. However, the

164 CHAPTER 10. WRITING MODULES

new okeys method is available to provide the keys in the order in which they
were created:

>>> from odict import ODict

>>> mydict = ODict()

>>> words = [’cat’,’dog’,’duck’,’chicken’,’goat’]

>>> for w in words:

... mydict[w] = len(w)

...

>>> mydict.keys()

[’goat’, ’chicken’, ’duck’, ’dog’, ’cat’]

>>> mydict.okeys()

[’cat’, ’dog’, ’duck’, ’chicken’, ’goat’]

10.10 Iterators

Now suppose that we’d like to be able to iterate over the keys of our ODict
object using a for loop, with the keys presented in the order in which they
were added. To acheive this goal, we need to define an __iter__ method
which simply returns itself, and a next method to return the keys in the order
we desire. When you implement an iterator, it’s your responsibility to raise
a StopIteration exception when the items of your object are exhausted.
Furthermore, you’ll usually need to define a new attribute in your object to
help you keep track of the most recently returned element. In this example,
you’d need to set the self.count variable to 0 in the __iter__ method.
The other additions which are required are shown below:

def iter(self):

self.count = 0

return(self)

def next:

if self.count >= len(self._okeys):

raise StopIteration

rval = self._okeys[self.count]

self.count = self.count + 1

return(rval)

